scholarly journals Spike-specific immune response induced by BNT162b2 mRNA vaccine in former COVID-19 patients and high responsive subjects

Author(s):  
Marta Cocciolo ◽  
Mattia Miroballo ◽  
Francesco Tamiro ◽  
Elisabetta De Santis ◽  
Beatrice Totti ◽  
...  

Background: The worldwide escalation of Coronavirus Disease 2019 (COVID-19) has urgently required the development of safe and effective vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of disease. The BNT162b2 (Pfizer–BioNTech) RNA-based vaccine confers 95% protection against COVID-19 by encoding a mutated isoform of SARS-CoV-2 full-length spike (S) protein. Objective: Here, we report the antigen-specific immune profile against SARS-CoV-2 S protein after vaccination with a single dose of BNT162b2 in order to define the immunological landscape required for an efficient response to the SARS-CoV-2 vaccine. Methods: We determined the levels of antibodies and antigen-specific B, T and NK-T cells against a recombinant GFP tagged SARS-CoV-2 S protein in subjects up to 20 days after injection of a single dose of BNT162b2 vaccine using a combined approach involving serological assays and flow cytometry analyses. Former COVID-19 patients have been also included in this study to evaluate the effect of vaccine after exposition to SARS-CoV-2. Results: The level of antigen-specific helper T-cells against SARS-CoV-2 S protein was reduced in subjects, low responsive or unresponsive to vaccination with respect to the highly responsive individuals, while the numbers of antigen-specific regulatory and cytotoxic T-cells were comparable. Of interest, in former COVID-19 patients, a single dose of BNT162b2 vaccine induced a significant increase of antibody production simultaneous with an antigen-specific B and NK-T cell response. Conclusion: Taken together, these results suggest that favorable immune profiles support the progression and an effective reaction to BNT162b2 vaccination.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A795-A795
Author(s):  
Hyeonbin Cho ◽  
Jae-Hwan Kim ◽  
Ji-Hyun Kim

BackgroundCancer immunotherapy (CIT) has substantially improved the survival of cancer patients. However, according to recent studies, liver metastasis was reported to predict worse outcomes for CIT. The main objective of the study is to evaluate the differences in the immune microenvironment (IME) between the primary lung cancer (PL) and synchronous liver metastasis (LM) using a multispectral imaging system.MethodsSix immune markers (CD4, CD8, CTLA-4, granzyme B (GZB), Foxp3 and PD-L1) were analyzed using a multiplex IHC system and inForm program (Akoya) on paired lung-liver samples of 10 patients. Cells were categorized into tumor nest and stroma, and cell counts per unit area were measured for comparison.ResultsThe number of tumor-infiltrating cytotoxic T cells (TIL) in PL (262.5 cells/mm2) was higher than that of LM (113.3 cells/mm2). Additionally, the ratio between the number of TIL and non-TIL was greater in PL (0.31) compared to that of LM (0.26). A similar trend appeared for Helper T cells and regulatory T cells (Treg), as PL consisted of higher numbers of T cells (791.8 Helper T cells/mm2, 195.7 Treg/mm2) than LM (626.3 Helper T cells/mm2, 121.3 Treg/mm2). However, cytotoxic T cells exhibiting GZB+ and CTLA-4- were fewer in PL (140.2 cells/mm2) than in LM (203.3 cells/mm2), and the ratio is 0.69. The mean number of GZB+ TIL in PL (32.5 cells/mm2) was lower than in LM (35.3 cells/mm2), and their proportions among total TIL counts were 0.12 and 0.31, respectively. In PL, GZB+: GZB- ratio is 0.16 while the ratio is 1.91 for LM. A fewer number of TILs exhibiting GZB suggests that PL has lower efficiency in immune response than LM. Another crucial checkpoint receptor that inhibits immune response, CTLA-4, was more prevalent in PL, with CTLA-4+: CTLA-4- ratio in Treg being 0.36 in PL, compared to 0.11 in LM. The tumor proportion score (TPS) of PD-L1 was higher in PL than LM (40.0 vs. 6.6).ConclusionsIn our study, we showed the differences in the numbers of TIL or regulatory T cells and expressions of immune checkpoint receptors (PD-L1, CTLA-4), which significantly influence outcomes for CIT. The study is ongoing to confirm different IME between the PL and LM groups in a larger tumor cohort.ReferencesPeng, Jianhong, et al., Immune Cell Infiltration in the Microenvironment of Liver Oligometastasis from Colorectal Cancer: Intratumoural CD8/CD3 Ratio Is a Valuable Prognostic Index for Patients Undergoing Liver Metastasectomy. Cancers 2019 Dec; 11(12): 1922. https://doi.org/10.3390/cancers11121922Tumeh, Paul C., et al., Liver Metastasis and treatment outcome with Anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol Res 2017 May; 5(5): 417–424. doi: 10.1158/2326-6066.CIR-16-0325Parra, E.R., Immune Cell Profiling in Cancer Using Multiplex Immunofluorescence and Digital Analysis Approaches; Streckfus, C.F., Ed.; IntechOpen: London, UK, 2018; pp. 1–13. doi: 10.5772/intechopen.80380Ribas, A., Hu-Lieskovan, S., What does PD-L1 positive or negative mean?. The Journal of Experimental Medicine 2016;213(13):2835–2840. https://doi.org/10.1084/jem.20161462


1982 ◽  
Vol 11 (3) ◽  
pp. 607-630
Author(s):  
Hermann Wagner ◽  
Martin Kronke ◽  
Werner Solbach ◽  
Peter Scheurich ◽  
Martin Röllinghoff ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


Author(s):  
Gavin P Spickett

Introduction Flow cytometry Tissue culture Proliferation assays Immunohistology Cytokine, chemokine, soluble protein assays Apoptosis assays Adhesion markers Bronchoalveolar lavage (BAL) studies CD40 ligand expression Complement membrane regulatory factors Cytokine and cytokine receptor measurement Cytotoxic T cells FOXP3 (regulatory T cells—IPEX syndrome) Genetic and protein studies...


2004 ◽  
Vol 72 (1) ◽  
pp. 159-167 ◽  
Author(s):  
Roman R. Ganta ◽  
Chuanmin Cheng ◽  
Melinda J. Wilkerson ◽  
Stephen K. Chapes

ABSTRACT Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. To examine the role of helper T cells in host resistance to this macrophage-tropic bacterium, we assessed E. chaffeensis infections in three mouse strains with differing functional levels of helper T cells. Wild-type, C57BL/6J mice resolved infections in approximately 2 weeks. Major histocompatibility complex class II (MHCII) knockout, B6.129-Abb tm1 mice lacking helper T cells developed persistent infections that were not resolved even after several months. CD4+ T-cell-deficient, B6.129S6-Cd4 tm1Knw mice cleared the infection, but the clearance took 2 weeks longer than it did for wild-type mice. C57BL/6J mice resolved infection more rapidly following a second experimental challenge, but B6.129S6-Cd4 tm1Knw mice did not. The B6.129S6-Cd4 tm1Knw mice also developed active E. chaffeensis-specific immunoglobulin G responses that were slightly lower in concentration and slower to develop than that observed in C57BL/6J mice. E. chaffeensis-specific cytotoxic T cells were not detected following a single bacterial challenge in any mouse strain, including wild-type C57BL/6J mice. However, the cytotoxic T-cell activity developed in all three mouse strains, including the MHCII and CD4+ T-cell knockouts, when challenged with a second E. chaffeensis infection. The data reported here suggest that the cell-mediated immunity, orchestrated by CD4+ T cells is critical for conferring rapid clearance of E. chaffeensis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3267-3267
Author(s):  
Lauren T. Southerland ◽  
Jian-Ming Li ◽  
Sohrab Hossain ◽  
Cynthia Giver ◽  
Wayne Harris ◽  
...  

Abstract Background: The severe morbidity and mortality associated with bone marrow transplantation (BMT) is caused by uninhibited immune responses to alloantigen and suppressed immune responses to pathogens. Vasoactive Intestinal Peptide (VIP) is an immunomodulatory neuropeptide produced by T-cells and nerve fibers in peripheral lymphoid organs that suppresses immune responses by induction of tolerogenic dendritic cells. In order to determine the immunoregulatory effects of VIP, we examined T-cell immune responses to allo- and viral-antigens in VIP knockout (KO) mice and mouse BMT recipients of hematopoietic cells from VIP KO donors. Methods: VIP KO mice and VIP WT littermates were infected with lethal or sub-lethal doses (5 × 104− 5 × 105 PFU) of murine cytomegalovirus (mCMV) and the T-cell response to viral antigen was measured by flow cytometry for mCMV peptide-MHC class 1-tetramer+ CD8+ T-cells. We transplanted 5 × 106 BM plus 1 × 106 splenocytes (SP) either from VIP KO or VIP WT donors in an C57BL/6 to F1(BL/6 × Balb/c) allo-BMT model and assessed survival, GvHD, donor T-cell expansion, chimerism, and response to mCMV vaccination and mCMV infection. Results: B-cell, αβ and γδ T-cell, CD8+ T-cell, CD11b+ myeloid cell, and dendritic cell numbers were equivalent between VIP KO and WT mice, while VIP KO mice had higher number of CD4+ and CD4+CD62L+CD25+ T-cells. Non-transplanted VIP KO mice survived mCMV infection better compared to VIP WT, with a brisker anti-viral T-cell response in the blood. In the allogeneic BMT setting, recipients of VIP KO BM plus VIP KO SP had more weight loss and lower (40%) 100 day post-transplant survival compared to the recipients of VIP KO BM plus WT SP (80% survival), recipients of WT BM plus KO SP (100% survival), and recipients of WT BM plus WT SP (80% survival). Recipients of VIP KO grafts had a significantly greater anti-mCMV response that peaked four days earlier than the tetramer response of mice transplanted with WT cells. This increased anti-viral response to vaccination correlated with a greater and more rapid T-cell response to secondary viral challenge. Conclusions: These experiments suggest that the absence of all VIP in the body, or the absence of VIP in a transplanted immune system, enhances anti-viral immunity and allo-immune responses. Modulation of the VIP pathway is a novel method to regulate post-transplant immunity. Figure 1: VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day. Figure 1:. VIP knockout(KO) mice have an increased CMV tetramer response. VIP KO and VIP WT mice were infected (day 0) with either a sub-lethal low dose (5 × 10^4 PFU) or a lethal high dose (5 × 10^5 PFU) of CMV. Peripheral blood was stained for T cell markers and tetramer and analyzed by flow cytometry. On day 3, high dosed VIP KO mice had a higher number of tetramer positive CD8 T cells and better survival than WT mice (all high dose VIP WT died prior to day 10). VIP KO mice had a significant increase in tetramer positive CD8 T cells between days 3 and 10. *** p<0.01, difference between VIP KO and VIP WT littermate at designated dose level and day.


1978 ◽  
Vol 147 (4) ◽  
pp. 1236-1252 ◽  
Author(s):  
T J Braciale ◽  
K L Yap

This report examines the requirement for infectious virus in the induction of influenza virus-specific cytotoxic T cells. Infectious influenza virus was found to be highly efficient at generating both primary and secondary cytotoxic T-cell response in vivo. Inactivated influenza virus however, failed to stimulate a detectable cytotoxic T-cell response in vivo even at immunizing doses 10(5)-10(6)-fold higher than the minimum stimulatory dose of infectious virus. Likewise inactivated virus failed to sensitize target cells for T cell-mediated lysis in vitro but could stimulate a specific cytotoxic response from primed cells in vitro. Possible requirements for the induction of virus-specific cytotoxic T-cell responses are discussed in light of these observations and those of other investigators.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1963-1969 ◽  
Author(s):  
Daniel G. Kavanagh ◽  
Daniel E. Kaufmann ◽  
Sherzana Sunderji ◽  
Nicole Frahm ◽  
Sylvie Le Gall ◽  
...  

Transfection with synthetic mRNA is a safe and efficient method of delivering antigens to dendritic cells for immunotherapy. Targeting antigens to the lysosome can sometimes enhance the CD4+ T-cell response. We transfected antigen-presenting cells (APCs) with mRNA encoding Gag-p24 and cytoplasmic, lysosomal, and secreted forms of Nef. Antigen-specific cytotoxic T cells were able to lyse the majority of transfected targets, indicating that transfection was efficient. Transfection of APCs with a Nef construct bearing lysosomal targeting signals produced rapid and prolonged antigen presentation to CD4+ and CD8+ T cells. Polyclonal CD4+ and CD8+ T-cell lines recognizing multiple distinct epitopes were expanded by coculture of transfected dendritic cells with peripheral blood mononuclear cells from viremic and aviremic HIV-infected subjects. Importantly, lysosome-targeted antigen drove a significantly greater expansion of Nef-specific CD4+ T cells than cytoplasmic antigen. The frequency of recognition of CD8 but not CD4 epitopes by mRNA-expanded T cells was inversely proportional to sequence entropy and was similar to ex vivo responses from a large chronic cohort. Thus human dendritic cells transfected with mRNA encoding lysosome-targeted HIV antigen can expand a broad, polyclonal repertoire of antiviral T cells, offering a promising approach to HIV immunotherapy.


1978 ◽  
Vol 148 (6) ◽  
pp. 1579-1591 ◽  
Author(s):  
L L Baum ◽  
L M Pilarski

Antigen-specific helper T cells are required in the generation of cytotoxic T cells from thymocyte precursors. We have demonstrated that these alloantigen-specific helper cells can be generated in vitro and that both the quantity and quality of the helpers appear to be superior to the help obtained from unprimed spleen cells. Optimal helper cell activity is produced at day two of culture when CBA splenic helper precursors are stimulated by irradiated allogeneic spleen cells. Helper cell precursors are antigen-specific cells which cannot be instructed to express forbidden receptor specificities and bear theta antigen on their surface. The helper effectors are radioresistant, theta-bearing, and antigen-specific cells.


Sign in / Sign up

Export Citation Format

Share Document