scholarly journals Development and Preclinical Evaluation of Virus Like Particle Vaccine Against COVID-19 Infection

Author(s):  
Ismail Yilmaz C ◽  
Emre Ipekoglu ◽  
Artun Bulbul ◽  
Nilsu Turay ◽  
Muzaffer Yildirim ◽  
...  

Background Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the 4 structural proteins of SARS-CoV-2. Methods VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography and characterized by tunable resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. Results Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1 biased T cell responses, reduced virus load and prevented lung pathology upon live virus challenge in vaccinated animals. Conclusion These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.

Author(s):  
Ismail Yilmaz C ◽  
Emre Ipekoglu ◽  
Muzaffer Yildirim ◽  
Irem Evcili ◽  
Naz Yilmaz ◽  
...  

Background Vaccines that incorporate multiple SARS-CoV-2 antigens can further broaden the breadth of virus-specific cellular and humoral immunity. This study describes the development and immunogenicity of SARS-CoV-2 VLP vaccine that incorporates the 4 structural proteins of SARS-CoV-2. Methods VLPs were generated in transiently transfected HEK293 cells, purified by multimodal chromatography and characterized by tunable resistive pulse sensing, AFM, SEM, and TEM. Immunoblotting studies verified the protein identities of VLPs. Cellular and humoral immune responses of immunized animals demonstrated the immune potency of the formulated VLP vaccine. Results Transiently transfected HEK293 cells reproducibly generated vesicular VLPs that were similar in size to and expressing all four structural proteins of SARS-CoV-2. Alum adsorbed, K3-CpG ODN adjuvanted VLPs elicited high titer anti-S, anti-RBD, anti-N IgG, triggered multifunctional Th1 biased T cell responses, reduced virus load and prevented lung pathology upon live virus challenge in vaccinated animals. Conclusion These data suggest that VLPs expressing all four structural protein antigens of SARS-CoV-2 are immunogenic and can protect animals from developing COVID-19 infection following vaccination.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 112 ◽  
Author(s):  
Arun S. Annamalai ◽  
Aryamav Pattnaik ◽  
Bikash R. Sahoo ◽  
Zack P. Guinn ◽  
Brianna L. Bullard ◽  
...  

Zika virus (ZIKV), a mosquito-transmitted flavivirus, emerged in the last decade causing serious human diseases, including congenital microcephaly in newborns and Guillain-Barré syndrome in adults. Although many vaccine platforms are at various stages of development, no licensed vaccines are currently available. Previously, we described a mutant MR766 ZIKV (m2MR) bearing an E protein mutation (N154A) that prevented its glycosylation, resulting in attenuation and defective neuroinvasion. To further attenuate m2MR for its potential use as a live viral vaccine, we incorporated additional mutations into m2MR by substituting the asparagine residues in the glycosylation sites (N130 and N207) of NS1 with alanine residues. Examination of pathogenic properties revealed that the virus (m5MR) carrying mutations in E (N154A) and NS1 (N130A and N207A) was fully attenuated with no disease signs in infected mice, inducing high levels of humoral and cell-mediated immune responses, and protecting mice from subsequent lethal virus challenge. Furthermore, passive transfer of sera from m5MR-infected mice into naïve animals resulted in complete protection from lethal challenge. The immune sera from m5MR-infected animals neutralized both African and Asian lineage viruses equally well, suggesting that m5MR virus could be developed as a potentially broad live virus vaccine candidate.


2021 ◽  
Vol 15 (2) ◽  
pp. 4
Author(s):  
Elitha Pulungan

Background: Dengue Hemorrhagic Fever (DHF) is an infectious disease caused by the dengue virus (DENV) which spread widely in tropical and subtropical regions of the world. DENV is a single-positive strand RNA virus with a genome size of ± 11kb which encodes three structural proteins, seven non-structural proteins, and two untranslated regions (UTR). The non-structural protein-1 (NS1) of DENV is known to have important role in dengue pathogenesis also promising to be developed as dengue vaccine. Lately, novel vaccine approach by DNA immunization have given new perspective for a safe, stable, and immunogenic vaccine platform. Previously, we have successfully construct DNA vaccine encoding NS1 protein of DENV2 (pUNS1) which express recombinant NS1 protein in-vitro. Thus, in this current study the ability of pUNS1 to induce humoral immune response will be further analyzed by in mice immunization. Methods: Sixteen BALB/c mice aged of 4 weeks were immunized 3 times with 100 µg of pUNS1 or pUMVC4a on 2 week time interval. Blood sampling was carried out just before immunization and termination was done 2 week after last immunization. Titer from individual mice sera against DENV-2 were measure with in-house ELISA. Results: IgG against NS1 protein of DENV2 titer from mice group immunized with recombinant pUNS1 shown high ELISA absorbancies, 5 times higher than pUMVC4a group. This result suggest the ability of pUNS1 to induce humoral immune response against NS1 DENV-2 in-vivo. Conclusion: Recombinant pUNS1 can induce humoral immune response in mice.


2000 ◽  
Vol 74 (6) ◽  
pp. 2620-2627 ◽  
Author(s):  
Daniel E. Hassett ◽  
Jie Zhang ◽  
Mark Slifka ◽  
J. Lindsay Whitton

ABSTRACT Virus infections are devastating to neonates, and the induction of active antiviral immunity in this age group is an important goal. Here, we show that a single neonatal DNA vaccination induces cellular and humoral immune responses which are maintained for a significant part of the animal's life span. We employ a sensitive technique which permits the first demonstration and quantitation, directly ex vivo, of virus-specific CD8+ T cells induced by DNA immunization. One year postvaccination, antigen-specific CD8+ T cells were readily detectable and constituted 0.5 to 1% of all CD8+ T cells. By several criteria—including cytokine production, perforin content, development of lytic ability, and protective capacity—DNA vaccine-induced CD8+ memory T cells were indistinguishable from memory cells induced by immunization with a conventional (live-virus) vaccine. Analyses of long-term humoral immune responses revealed that, in contrast to the strong immunoglobulin G2a (IgG2a) skewing of the humoral response seen after conventional vaccination, IgG1 and IgG2a levels were similar in DNA-vaccinated neonatal and adult animals, indicating a balanced T helper response. Collectively, these results show that a single DNA vaccination within hours or days of birth can induce long-lasting CD8+ T- and B-cell responses; there is no need for secondary immunization (boosting). Furthermore, the observed immune responses induced in neonates and in adults are indistinguishable by several criteria, including protection against virus challenge.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 622
Author(s):  
Kassandra L. Carpio ◽  
Alan D. T. Barrett

The Flavivirus genus contains many important human pathogens, including dengue, Japanese encephalitis (JE), tick-borne encephalitis (TBE), West Nile (WN), yellow fever (YF) and Zika (ZIK) viruses. While there are effective vaccines for a few flavivirus diseases (JE, TBE and YF), the majority do not have vaccines, including WN and ZIK. The flavivirus nonstructural 1 (NS1) protein has an unusual structure–function because it is glycosylated and forms different structures to facilitate different roles intracellularly and extracellularly, including roles in the replication complex, assisting in virus assembly, and complement antagonism. It also plays a role in protective immunity through antibody-mediated cellular cytotoxicity, and anti-NS1 antibodies elicit passive protection in animal models against a virus challenge. Historically, NS1 has been used as a diagnostic marker for the flavivirus infection due to its complement fixing properties and specificity. Its role in disease pathogenesis, and the strong humoral immune response resulting from infection, makes NS1 an excellent target for inclusion in candidate flavivirus vaccines.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nanda Kishore Routhu ◽  
Narayanaiah Cheedarla ◽  
Venkata Satish Bollimpelli ◽  
Sailaja Gangadhara ◽  
Venkata Viswanadh Edara ◽  
...  

AbstractThere is a great need for the development of vaccines that induce potent and long-lasting protective immunity against SARS-CoV-2. Multimeric display of the antigen combined with potent adjuvant can enhance the potency and longevity of the antibody response. The receptor binding domain (RBD) of the spike protein is a primary target of neutralizing antibodies. Here, we developed a trimeric form of the RBD and show that it induces a potent neutralizing antibody response against live virus with diverse effector functions and provides protection against SARS-CoV-2 challenge in mice and rhesus macaques. The trimeric form induces higher neutralizing antibody titer compared to monomer with as low as 1μg antigen dose. In mice, adjuvanting the protein with a TLR7/8 agonist formulation alum-3M-052 induces 100-fold higher neutralizing antibody titer and superior protection from infection compared to alum. SARS-CoV-2 infection causes significant loss of innate cells and pathology in the lung, and vaccination protects from changes in innate cells and lung pathology. These results demonstrate RBD trimer protein as a suitable candidate for vaccine against SARS-CoV-2.


2012 ◽  
Vol 56 (12) ◽  
pp. 6328-6333 ◽  
Author(s):  
Donald F. Smee ◽  
Mark von Itzstein ◽  
Beenu Bhatt ◽  
E. Bart Tarbet

ABSTRACTCompounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 821
Author(s):  
Rohitash Yadav ◽  
Jitendra Kumar Chaudhary ◽  
Neeraj Jain ◽  
Pankaj Kumar Chaudhary ◽  
Supriya Khanra ◽  
...  

Coronavirus belongs to the family of Coronaviridae, comprising single-stranded, positive-sense RNA genome (+ ssRNA) of around 26 to 32 kilobases, and has been known to cause infection to a myriad of mammalian hosts, such as humans, cats, bats, civets, dogs, and camels with varied consequences in terms of death and debilitation. Strikingly, novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and found to be the causative agent of coronavirus disease-19 (COVID-19), shows 88% of sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79% with SARS-CoV and 50% with MERS-CoV, respectively. Despite key amino acid residual variability, there is an incredible structural similarity between the receptor binding domain (RBD) of spike protein (S) of SARS-CoV-2 and SARS-CoV. During infection, spike protein of SARS-CoV-2 compared to SARS-CoV displays 10–20 times greater affinity for its cognate host cell receptor, angiotensin-converting enzyme 2 (ACE2), leading proteolytic cleavage of S protein by transmembrane protease serine 2 (TMPRSS2). Following cellular entry, the ORF-1a and ORF-1ab, located downstream to 5′ end of + ssRNA genome, undergo translation, thereby forming two large polyproteins, pp1a and pp1ab. These polyproteins, following protease-induced cleavage and molecular assembly, form functional viral RNA polymerase, also referred to as replicase. Thereafter, uninterrupted orchestrated replication-transcription molecular events lead to the synthesis of multiple nested sets of subgenomic mRNAs (sgRNAs), which are finally translated to several structural and accessory proteins participating in structure formation and various molecular functions of virus, respectively. These multiple structural proteins assemble and encapsulate genomic RNA (gRNA), resulting in numerous viral progenies, which eventually exit the host cell, and spread infection to rest of the body. In this review, we primarily focus on genomic organization, structural and non-structural protein components, and potential prospective molecular targets for development of therapeutic drugs, convalescent plasm therapy, and a myriad of potential vaccines to tackle SARS-CoV-2 infection.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 364
Author(s):  
Jun Ma ◽  
Lulu Ma ◽  
Meiting Yang ◽  
Wei Wu ◽  
Wenhai Feng ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.


2020 ◽  
Author(s):  
Min Wang ◽  
Fei Ye ◽  
Jiaqi Su ◽  
Jingru Zhao ◽  
Bin Yuan ◽  
...  

Abstract The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously designated as 2019-nCoV) outbreak has caused global concern1. Currently, there are no clinically approved specific drugs or vaccines available for this virus. The viral polymerase is a promising target for developing broad- spectrum antiviral drugs. Here, based on the highly similar structure of SARS- CoV non-structural protein 12 (nsp12) polymerase subunit2, we applied virtual screen for the available compounds, including both the FDA-approved and under- clinic drugs, to identify potential antiviral molecules against SARS-CoV-2. We found two drugs, the clinically approved anti-fungi drug Caspofungin Acetate (Cancidas) and the oncolytic peptide LTX-315, can bind SARS-CoV-2 nsp12 protein to block the polymerase activity in vitro. Further live virus assay revealed that both Caspofungin Acetate and LTX-315 can effectively inhibit SARS-CoV-2 replication in vero cells. These findings present promising drug candidates for treatment of related diseases and would also stimulate the development of pan- coronavirus antiviral agents.Authors Min Wang, Fei Ye, Jiaqi Su, Jingru Zhao, and Bin Yuan contributed equally to this work.


Sign in / Sign up

Export Citation Format

Share Document