scholarly journals Approaches in the Photosynthetic Production of Sustainable Fuels by Cyanobacteria using Tools of Synthetic Biology

Author(s):  
Indrajeet . ◽  
Akhil Rautela ◽  
Sanjay Kumar

Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. Simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavour from the synthetic biology approach. An improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain which can contain multiple target genes in single operon will vastly expand the functions that can be used for engineering photosynthetic cyanobacteria for the generation of biofuels. In this review, recent advancements and approaches in synthetic biology tools and biofuel production by metabolically engineered cyanobacteria have been discussed. Various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol and fatty acids which can be a substitute of petroleum and fossil fuels in future have been elaborated.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2914
Author(s):  
Kevin J. H. Lim ◽  
Yan Ping Lim ◽  
Yossa D. Hartono ◽  
Maybelle K. Go ◽  
Hao Fan ◽  
...  

Natural products make up a large proportion of medicine available today. Cannabinoids from the plant Cannabis sativa is one unique class of meroterpenoids that have shown a wide range of bioactivities and recently seen significant developments in their status as therapeutic agents for various indications. Their complex chemical structures make it difficult to chemically synthesize them in efficient yields. Synthetic biology has presented a solution to this through metabolic engineering in heterologous hosts. Through genetic manipulation, rare phytocannabinoids that are produced in low yields in the plant can now be synthesized in larger quantities for therapeutic and commercial use. Additionally, an exciting avenue of exploring new chemical spaces is made available as novel derivatized compounds can be produced and investigated for their bioactivities. In this review, we summarized the biosynthetic pathways of phytocannabinoids and synthetic biology efforts in producing them in heterologous hosts. Detailed mechanistic insights are discussed in each part of the pathway in order to explore strategies for creating novel cannabinoids. Lastly, we discussed studies conducted on biological targets such as CB1, CB2 and orphan receptors along with their affinities to these cannabinoid ligands with a view to inform upstream diversification efforts.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Verónica Leticia Colin ◽  
Analía Rodríguez ◽  
Héctor Antonio Cristóbal

Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Joseph Koussa ◽  
Amphun Chaiboonchoe ◽  
Kourosh Salehi-Ashtiani

The increased demand and consumption of fossil fuels have raised interest in finding renewable energy sources throughout the globe. Much focus has been placed on optimizing microorganisms and primarily microalgae, to efficiently produce compounds that can substitute for fossil fuels. However, the path to achieving economic feasibility is likely to require strain optimization through using available tools and technologies in the fields of systems and synthetic biology. Such approaches invoke a deep understanding of the metabolic networks of the organisms and their genomic and proteomic profiles. The advent of next generation sequencing and other high throughput methods has led to a major increase in availability of biological data. Integration of such disparate data can help define the emergent metabolic system properties, which is of crucial importance in addressing biofuel production optimization. Herein, we review major computational tools and approaches developed and used in order to potentially identify target genes, pathways, and reactions of particular interest to biofuel production in algae. As the use of these tools and approaches has not been fully implemented in algal biofuel research, the aim of this review is to highlight the potential utility of these resources toward their future implementation in algal research.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mobolaji Felicia Adegboye ◽  
Omena Bernard Ojuederie ◽  
Paola M. Talia ◽  
Olubukola Oluranti Babalola

AbstractThe issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Changpyo Han ◽  
Heeun Kwon ◽  
Gyuyeon Park ◽  
Minjeong Jang ◽  
Hye-Jeong Lee ◽  
...  

ABSTRACT Yarrowia lipolytica is a non-conventional, heterothallic, oleaginous yeast with wide range of industrial applications. Increasing ploidy can improve advantageous traits for industrial applications including genetic stability, stress resistance, and productivity, but the construction of knockout mutant strains from polyploid cells requires significant effort due to the increased copy numbers of target genes. The goal of this study was to evaluate the effectiveness of a mating-type switching strategy by single-step transformation without a genetic manipulation vestige, and to optimize the conventional method for increasing ploidy (mating) in Y. lipolytica. In this study, mating-type genes in haploid Y. lipolytica cells were scarlessly converted into the opposite type genes by site-specific homologous recombination, and the resulting MATB-type cells were mated at low temperature (22°C) with addition of sodium citrate with each MATA-type haploid cell to yield a MATA/MATB-type diploid strain with genetic information from both parental strains. The results of this study can be used to increase ploidy and for whole genome engineering of a yeast strain with unparalleled versatility for industrial application.


2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Shingo Nakamura ◽  
◽  
Naoko Ando ◽  
Masayuki Ishihara ◽  
Masahiro Sato

The liver is a major organ with a wide range of functions, including detoxification, protein synthesis, and bile production. Liver dysfunction causes liver diseases such as hepatic cirrhosis and hepatitis. To explore the pathogenesis of these liver diseases, and the therapeutic agents against them, mice have been widely used as animal models. Genetic manipulation is easy in mice via the administration of nucleic acids (NAs) in the tail-vein. In particular, hydrodynamics-based gene delivery (HGD) is a method based on the introduction of a large volume of NA-containing solution over a short period in the tail-vein. It is recognized as a powerful tool to efficiently transfect hepatocytes. Genome editing, as illustrated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) system, has also been recognized as a powerful tool to manipulate target genes in host genomes. Recently, studies have described the tail-vein-mediated introduction of genome editing components for the generation of liver tumors, correction of mutated genes causing liver dysfunction, and generation of mice with liver disease. More importantly, this HGD method can bypass the need to create mouse progeny carrying the targeted mutation in their germline. In this review, the past and present achievements of liver-targeted manipulation achieved via intravenous injection of genome editing components will be summarized.


2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 629
Author(s):  
Aniello Costantini ◽  
Valeria Califano

Lipases are ubiquitous enzymes whose physiological role is the hydrolysis of triacylglycerol into fatty acids. They are the most studied and industrially interesting enzymes, thanks to their versatility to promote a plethora of reactions on a wide range of substrates. In fact, depending on the reaction conditions, they can also catalyze synthesis reactions, such as esterification, acidolysis and transesterification. The latter is particularly important for biodiesel production. Biodiesel can be produced from animal fats or vegetable oils and is considered as a biodegradable, non-toxic and renewable energy source. The use of lipases as industrial catalysts is subordinated to their immobilization on insoluble supports, to allow multiple uses and use in continuous processes, but also to stabilize the enzyme, intrinsically prone to denaturation with consequent loss of activity. Among the materials that can be used for lipase immobilization, mesoporous silica nanoparticles represent a good choice due to the combination of thermal and mechanical stability with controlled textural characteristics. Moreover, the presence of abundant surface hydroxyl groups allows for easy chemical surface functionalization. This latter aspect has the main importance since lipases have a high affinity with hydrophobic supports. The objective of this work is to provide an overview of the recent progress of lipase immobilization in mesoporous silica nanoparticles with a focus on biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document