scholarly journals A low-cost, portable, and practical LAMP device for point-of-diagnosis in the field

Author(s):  
Sumeyra Kaymaz ◽  
Ali Ergenç ◽  
Ali Aytekin ◽  
Stuart Lucas ◽  
Meltem Elitas

Transition of rapid, ready-to-use, and low-cost nucleic acid-based detection technologies from laboratories to points of sample collection has drastically accelerated. However, most of these approaches are still incapable of diagnosis starting from sampling, through nucleic acid isolation and detection in the field. Here, we developed a simple, portable, low-cost, colorimetric, and remotely controllable platform for reliable, high-throughput, and rapid diagnosis using loop mediated isothermal amplification (LAMP) assays. It consists of a thermally isolated cup, low-cost electronic components, a polydimethylsiloxane sample well, and a fast prototyped case that covers electronic components. The steady-state temperature error of the system is less than 1%. We performed LAMP, Colony-LAMP, and Colony PCR reactions using the yaiO2 primer set for Escherichia coli and Pseudomonas aeruginosa samples at 65˚C and 30 min. We detected the end-point colorimetric readouts by the naked eye under day light. We confirmed the specificity and sensitivity of our approach using pure genomic DNA and crude bacterial colonies. We benchmarked our Colony-LAMP detection against Colony PCR. The number of samples tested can easily be modified for higher throughput in our system. We strongly believe that our platform can greatly contribute rapid and reliable diagnosis in versatile operational environments.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fei Zhao ◽  
Eun Yeong Lee ◽  
Geun Su Noh ◽  
Jaehyup Shin ◽  
Huifang Liu ◽  
...  

Abstract Here, we describe a simple, universal protocol for use in nucleic acid testing-based pathogen diagnostics, which requires only hand-powered sample preparation, including the processes of pathogen enrichment and nucleic acid isolation. The protocol uses low-cost amine-functionalized diatomaceous earth with a 1-μm Teflon filter as a reaction matrix in both stages of the process, using homobifunctional imidoesters. Using a simple syringe as a pump, the capture efficiency for a large sample volume (<50 mL) was enhanced by up to 98.3%, and the detection limit was 1 CFU/mL, 100-fold better than that of common commercial nucleic acid isolation kit. This protocol can also be combined with commercialized 96-well filter plates for robust sample preparation. Our proposed system is robust, simple, low-cost, universal, and rapid (taking <20 min), and it works regardless of the ambient environment and sample pretreatment, requiring no electricity or instruments. Its benefits include the simplicity of producing its components and its ease of operation, and it can be readily integrated with other assays for point-of-care diagnostics.


2019 ◽  
Vol 11 (4) ◽  
pp. 314-315
Author(s):  
James S Leathers ◽  
Maria Belen Pisano ◽  
Viviana Re ◽  
Gertine van Oord ◽  
Amir Sultan ◽  
...  

Abstract Background Treatment of HCV with direct-acting antivirals has enabled the discussion of HCV eradication worldwide. Envisioning this aim requires implementation of mass screening in resource-limited areas, usually constrained by testing costs. Methods We validated a low-cost, rapid diagnosis test (RDT) for HCV in three different continents in 141 individuals. Results The HCV RDT showed 100% specificity and sensitivity across different samples regardless of genotype or viral load (in samples with such information, 90%). Conclusions The HCV test validated in this study can allow for HCV screening in areas of need when properly used.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3358
Author(s):  
Donato Calabria ◽  
Maria Maddalena Calabretta ◽  
Martina Zangheri ◽  
Elisa Marchegiani ◽  
Ilaria Trozzi ◽  
...  

Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evan Amalfitano ◽  
Margot Karlikow ◽  
Masoud Norouzi ◽  
Katariina Jaenes ◽  
Seray Cicek ◽  
...  

AbstractRecent advances in cell-free synthetic biology have given rise to gene circuit-based sensors with the potential to provide decentralized and low-cost molecular diagnostics. However, it remains a challenge to deliver this sensing capacity into the hands of users in a practical manner. Here, we leverage the glucose meter, one of the most widely available point-of-care sensing devices, to serve as a universal reader for these decentralized diagnostics. We describe a molecular translator that can convert the activation of conventional gene circuit-based sensors into a glucose output that can be read by off-the-shelf glucose meters. We show the development of new glucogenic reporter systems, multiplexed reporter outputs and detection of nucleic acid targets down to the low attomolar range. Using this glucose-meter interface, we demonstrate the detection of a small-molecule analyte; sample-to-result diagnostics for typhoid, paratyphoid A/B; and show the potential for pandemic response with nucleic acid sensors for SARS-CoV-2.


2018 ◽  
Vol 24 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Birgit Bremer ◽  
Olympia E Anastasiou ◽  
Sandra Ciesek ◽  
Heiner Wedemeyer

2021 ◽  
Vol 45 (3) ◽  
pp. 143-148
Author(s):  
Mustafa Özcürümez ◽  
Antonios Katsounas ◽  
Stefan Holdenrieder ◽  
Alexander von Meyer ◽  
Harald Renz ◽  
...  

Abstract Objectives Point-of-care antigen tests (PoC-AgTs) for the rapid detection of SARS-CoV-2 infection enable screening of additional populations with less effort, independent of laboratories and at a low cost. PoC-AgTs have therefore been included in national testing strategies with additional quality requirements to address limitations in specificity and sensitivity. Information given in the package inserts of the test providers should enable the user to evaluate the performance of a PoC-AgT in advance. The quality of this information has been independently assessed since the Corona Test Ordinance came into force in Germany in October 2020. Methods The completeness of analytical and diagnostic performance specifications was assessed for all package inserts publicly available via the Paul Ehrlich Institute (PEI). It was ascertained whether the minimum criteria, recommendations, and extended criteria of the PEI were comprehensibly fulfilled. The number of tests removed from the list by March 2021 was determined. Results By the closing date of the survey (17.11.2020), the PEI had listed 165 PoC-AgTs that formally fulfilled the minimum criteria and were thus reimbursed. A total of 78 identical systems were identified. Almost all providers were found to have gaps in the information on the validation results of their tests, meaning that an evaluation of performance is only possible to a limited extent. Until March 2021, 25 non-identical PoC-AgTs have been removed from the list. Conclusions Many PoC-AgTs could not be comprehensively evaluated based on the information provided by the provider. Users are therefore dependent on provider-independent sources of information.


Revista Vitae ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Laura Carvajal Barbosa ◽  
Diego Insuasty Cepeda ◽  
Andrés Felipe León Torres ◽  
Maria Mercedes Arias Cortes ◽  
Zuly Jenny Rivera Monroy ◽  
...  

BACKGROUND : Biosensing techniques have been the subject of exponentially increasing interest due to their performance advantages such as high selectivity and sensitivity, easy operation, low cost, short analysis time, simple sample preparation, and real-time detection. Biosensors have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors. Therefore, there has been a broad scope of applications for biosensing techniques, and nowadays, they are ubiquitous in different areas of environmental, healthcare, and food safety. Biosensors have been used for environmental studies, detecting and quantifying pollutants in water, air, and soil. Biosensors also showed great potential for developing analytical tools with countless applications in diagnosing, preventing, and treating diseases, mainly by detecting biomarkers. Biosensors as a medical device can identify nucleic acids, proteins, peptides, metabolites, etc.; these analytes may be biomarkers associated with the disease status. Bacterial food contamination is considered a worldwide public health issue; biosensor-based analytical techniques can identify the presence or absence of pathogenic agents in food. OBJECTIVES: The present review aims to establish state-of-the-art, comprising the recent advances in the use of nucleic acid-based biosensors and their novel application for the detection of nucleic acids. Emphasis will be given to the performance characteristics, advantages, and challenges. Additionally, food safety applications of nucleic acid-based biosensors will be discussed. METHODS: Recent research articles related to nucleic acid-based biosensors, biosensors for detecting nucleic acids, biosensors and food safety, and biosensors in environmental monitoring were reviewed. Also, biosensing platforms associated with the clinical diagnosis and food industry were included. RESULTS: It is possible to appreciate that multiple applications of nucleic acid-based biosensors have been reported in the diagnosis, prevention, and treatment of diseases, as well as to identify foodborne pathogenic bacteria. The use of PNA and aptamers opens the possibility of developing new biometric tools with better analytical properties. CONCLUSIONS: Biosensors could be considered the most important tool for preventing, treating, and monitoring diseases that significantly impact human health. The aptamers have advantages as biorecognition elements due to the structural conformation, hybridization capacity, robustness, stability, and lower costs. It is necessary to implement biosensors in situ to identify analytes with high selectivity and lower detection limits.


2020 ◽  
Author(s):  
Jana von Freyberg ◽  
Julia L. A. Knapp ◽  
Andrea Rücker ◽  
Bjørn Studer ◽  
James W. Kirchner

Abstract. Automated field sampling of streamwater or precipitation for subsequent analysis of stable water isotopes (2H and 18O) is often conducted with off-the-shelf automated samplers. However, water samples stored in the field for days and weeks in open bottles inside autosamplers undergo isotopic fractionation and vapor mixing, thus altering their isotopic signature. We therefore designed an evaporation protection method which modifies autosampler bottles using a syringe housing and silicone tube, and tested whether this method reduces evaporative fractionation and vapor mixing in water samples stored for up to 24 days in ISCO autosamplers (Teledyne ISCO., Lincoln, US). Laboratory and field tests under different temperature and humidity conditions showed that water samples in bottles with evaporation protection were far less altered by evaporative fractionation and vapor mixing than samples in conventional open bottles. Our design is a cost-efficient approach to upgrade the 1-litre sample bottles of ISCO 6712 Full-size Portable Samplers, allowing secure water sample collection in warm and dry environments. Our design can be readily adapted (e.g., by using a different syringe size) to fit the bottles used by many other field autosamplers.


2020 ◽  
Author(s):  
Pia Jokela ◽  
Anu E Jääskeläinen ◽  
Hanna Jarva ◽  
Tanja Holma ◽  
Maarit J Ahava ◽  
...  

AbstractRapid sample-to-answer tests for detection of SARS-CoV-2 are emerging and data on their relative performance is urgently needed. We evaluated the analytical performance of two rapid nucleic acid tests, Cepheid Xpert® Xpress SARS-CoV-2 and Mobidiag Novodiag® Covid-19, in comparison to a combination reference of three large-scale PCR tests. Moreover, utility of the Novodiag® test in tertiary care emergency departments was assessed. In the preliminary evaluation, analysis of 90 respiratory samples resulted in 100% specificity and sensitivity for Xpert®, whereas analysis of 107 samples resulted in 93.4% sensitivity and 100% specificity for Novodiag®. Rapid SARS-CoV-2 testing with Novodiag® was made available for four tertiary care emergency departments in Helsinki, Finland between 18 and 31 May, coinciding with a rapidly declining epidemic phase. Altogether 361 respiratory specimens, together with relevant clinical data, were analyzed with Novodiag® and reference tests: 355/361 of the specimens were negative with both methods, and 1/361 was positive in Novodiag® and negative by the reference method. Of the 5 remaining specimens, two were negative with Novodiag®, but positive with the reference method with late Ct values. On average, a test result using Novodiag® was available nearly 8 hours earlier than that obtained with the large-scale PCR tests. While the performance of novel sample-to-answer PCR tests need to be carefully evaluated, they may provide timely and reliable results in detection of SARS-CoV-2 and thus facilitate patient management including effective cohorting.


Sign in / Sign up

Export Citation Format

Share Document