scholarly journals Optimization of Power Plant for Telecom Sector Based on Embedded System

Author(s):  
Sarang Karim ◽  
Halar Haleem Memon ◽  
Shahzeb Ansari ◽  
Kashif Hussain ◽  
Bhawani Shanker Chowdhry

Modern Telecom Sector is eventually facing exceptionally tough challenges because of continuous and unexpected increase in power density requirement for the communicating machinery and equipment. To fulfil the power requirements for the equipment, a significant architecture and an optimal technique must be introduced. In this paper, a microcontroller-based optimization use of power-density has been carried out. Meeting above requirements, various equipment and electronic devices are employed. We have designed a microcontroller-based system via PROTEUS Virtual System Modeling to acquire efficient and effective results. The main focus of our work is to supply the power to Telecom equipment in meantime. The power is feeding on batteries and DG (Diesel Generator) set, depending on the condition of the power requirements. The changeover operations are performed by different relays, which are dully programmed via a microcontroller in Keil software. The power capacity of Telecom ((Telecommunication) equipment is ranged from 39-48 Volts DC. The rectification process is done by switch mode rectifiers instead of linear rectifiers. Because the switch-mode rectifier technology has brought fabulous improvements in power density as compared to linear rectifiers. This is done via simulation of the smart switch in PROTEUS software. The outcomes of the proposed system are costeffective in terms of fuel consumption of DG.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit V. Padgavhankar ◽  
Sharad W. Mohod

The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM) and the experimental results are presented.


2011 ◽  
Vol 694 ◽  
pp. 341-344
Author(s):  
Li Jun Wang ◽  
Jie Qiong Li ◽  
Hong Jing Wang

Application of nanocrystalline magnetic materials in electromechanical devices is increasingly being adopted, helping to solve energy-saving problems and global warming. Compared with conventional silicon steel materials, nanocrystalline materials show faster flux reversal, lower magnetic loss and more versatile property modification, which result in the successful application in modern electronic devices. Nanocrystalline magnetic materials will be increasingly popularized and used in power electronics, telecommunication equipment and electronic article surveillance systems due to the demands for smaller and efficient devices in the future.


2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mohammad J. M. Zedan ◽  
Ali I. Abduljabbar ◽  
Fahad Layth Malallah ◽  
Mustafa Ghanem Saeed

Nowadays, much research attention is focused on human–computer interaction (HCI), specifically in terms of biosignal, which has been recently used for the remote controlling to offer benefits especially for disabled people or protecting against contagions, such as coronavirus. In this paper, a biosignal type, namely, facial emotional signal, is proposed to control electronic devices remotely via emotional vision recognition. The objective is converting only two facial emotions: a smiling or nonsmiling vision signal captured by the camera into a remote control signal. The methodology is achieved by combining machine learning (for smiling recognition) and embedded systems (for remote control IoT) fields. In terms of the smiling recognition, GENKl-4K database is exploited to train a model, which is built in the following sequenced steps: real-time video, snapshot image, preprocessing, face detection, feature extraction using HOG, and then finally SVM for the classification. The achieved recognition rate is up to 89% for the training and testing with 10-fold validation of SVM. In terms of IoT, the Arduino and MCU (Tx and Rx) nodes are exploited for transferring the resulting biosignal remotely as a server and client via the HTTP protocol. Promising experimental results are achieved by conducting experiments on 40 individuals who participated in controlling their emotional biosignals on several devices such as closing and opening a door and also turning the alarm on or off through Wi-Fi. The system implementing this research is developed in Matlab. It connects a webcam to Arduino and a MCU node as an embedded system.


Author(s):  
Balázs Farkas ◽  
Károly Veszprémi

Development of power electronic devices requires multi -disciplined engineering activities. These cover the thermal, electrical and software design. Due to this design complexity rapid prototyping methods and model-based design are becoming more and more important in the R&D projects in this field. In case of the multi-level inverter based drives the strict reliability requirements make the aforementioned new approaches more attractive. This article is the first part of the series which introduces the application of the model based design and Hardware-in-the-Loop (HIL) tools through the modeling of a Cellular H-Bridge inverter (CHB). This article focuses on the power electronic system modeling and verification. The model of the CHB is implemented and verified in Matlab.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 393 ◽  
Author(s):  
Jordi-Roger Riba ◽  
Manuel Moreno-Eguilaz ◽  
Santiago Bogarra ◽  
Antoni Garcia

This paper proposes a white-box approach for identifying the parameters of DC-DC buck and boost switch mode power converters. It is based on discretizing the differential equations that describe the dynamic behavior of the converters. From the discretized equations and experimental data, the parameters of the converters are identified, thus obtaining both the values of the passive components and the transfer function coefficients of the controller. To this end, steady state and transient experimental signals are analyzed, including the input and output voltages and the inductor and output currents. To determine the accuracy of the proposed method, once the parameters are identified, a simulation with the identified parameters of the converter is run and compared with experimental signals. Such results show the accuracy and feasibility of the approach proposed in this work, which can be extended to other converters and electrical and electronic devices.


Author(s):  
Stephen M. Walsh ◽  
Bernard A. Malouin ◽  
Eric A. Browne ◽  
Kevin R. Bagnall ◽  
Evelyn N. Wang ◽  
...  

2016 ◽  
Vol 22 (3) ◽  
pp. 537-543
Author(s):  
Gheorghe Samoilescu ◽  
Adelina Bordianu ◽  
Serghei Radu ◽  
Raluca-Aurora Apostol-Mateş

Abstract Screening is one of the main ways to achieve the Electromagnetic Compatibility (EMC) in the electric and electronic devices and equipments onboard a vessel. The present paper analyses the results of certain measurements made in order to determine the screen efficiency from the point of view of damping the induction magnetic field. Starting from the calculus for the screen efficiency, measurements of the intensity and level of the electric field, of the power density, of the damping and of the screening factor were made. These measurements were made both in the presence and in the absence of the screen.


Sign in / Sign up

Export Citation Format

Share Document