scholarly journals Performance based approach in design of freeform space structures

2017 ◽  
Vol 15 (2) ◽  
pp. 153-166
Author(s):  
Miodrag Nestorovic ◽  
Predrag Nestorovic ◽  
Jelena Milosevic

This paper is related to the fact that use of computational tools for form generation, analysis and digital fabrication (CAD/CAM/CAE) in an efficient way enables accurate representation of ideas, simulation of diverse impact and production of rational design solutions. Application of geometrical and numerical computational methods and adoption of performance based priorities enables formal exploration in constrained conditions and improvement of architectural engineering design process. Implementation of advanced technologies in 3D digital design process facilitates production of unconventional complex designs, their verification by construction of physical models and experimental diagnostics, as phase preceding construction of real structure. Within this work concept that provides design of non-standard, context-specific, freeform structure using rapid prototyping technology and 3D optical measurement will be reviewed. The analyzed design solution of roof structure above atrium of National Museum in Belgrade has a function to demonstrate the effectiveness of this approach.

2013 ◽  
Vol 4 (2) ◽  
pp. 22 ◽  
Author(s):  
Maycon Sedrez ◽  
Rafael de Moraes Meneghel

Parametric design and digital fabrication are becoming an ubiquitous tool to contemporary architecture and implies a different method of detailing. With this new perception of the contemporary detail we have developed a façade sun shade using fractal geometry as a generative system. Fractals are complex shapes generated with simple rules, so is relatively easy to change the final geometry when we work with parameters. The design process made possible the creation of many solutions using parametric definitions. Those solutions were physically modeled using rapid prototyping which we consider as an essential tool to the design process. This method also involved analysis and testing of the design using software and the physical models. With this project it was possible to conclude that when working with digital fabrication architects need to incorporate a new set of skills, and that collaboration between professional is extremely important.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carla Aramouny

PurposeThis paper presents the applied research and design work on innovative and sustainable building products developed by an undergraduate architecture seminar course. It presents the case for innovative uses of cement-based products, while framing the proposals within a global shift toward environmentally responsive and bio-integrated materials.Design/methodology/approachThe methodology utilizes a process of hybridization between digital fabrication and analog making methods that is framed within the larger design discourse and that intersects the digital design process with material know-how. The approach engages local problematics and applies advanced technology and the integration of natural behaviors to develop a rich applied design method.FindingsThrough the presented work and proposed building products, critical findings and outcomes emerge, ones that relate to the design process itself and others to the designed products.Originality/valueThe research presented here proposes novel approaches to cement-based building systems utilizing digital and analog fabrication, and original design solutions that engage with their context and provide active and crucial environmental performance.


2016 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Maral Babapour Chafi

Designers engage in various activities, dealing with different materials and media to externalise and represent their form ideas. This paper presents a review of design research literature regarding externalisation activities in design process: sketching, building physical models and digital modelling. The aim has been to review research on the roles of media and representations in design processes, and highlight knowledge gaps and questions for future research.


2021 ◽  
Vol 18 (4) ◽  
pp. 857-871
Author(s):  
Elio Matteo Curcio ◽  
Giuseppe Carbone

AbstractThis paper addresses the design of a novel bionic robotic device for upper limb rehabilitation tasks at home. The main goal of the design process has been to obtain a rehabilitation device, which can be easily portable and can be managed remotely by a professional therapist. This allows to treat people also in regions that are not easily reachable with a significant cost reduction. Other potential benefits can be envisaged, for instance, in the possibility to keep social distancing while allowing rehabilitation treatments even during a pandemic spread. Specific attention has been devoted to design the main mechatronic components by developing specific kinematics and dynamics models. The design process includes the implementation of a specific control hardware and software. Preliminary experimental tests are reported to show the effectiveness and feasibility of the proposed design solution.


2021 ◽  
Vol 13 (6) ◽  
pp. 3249
Author(s):  
Marie C. Gramkow ◽  
Ulrik Sidenius ◽  
Gaochao Zhang ◽  
Ulrika K. Stigsdotter

The work of landscape architects can contribute to the United Nation’s Sustainable Development Goals and the associated ‘Leave no one behind’ agenda by creating accessible and health-promoting green spaces (especially goals 3, 10 and 11). To ensure that the design of green space delivers accessibility and intended health outcomes, an evidence-based design process is recommended. This is a challenge, since many landscape architects are not trained in evidence-based design, and leading scholars have called for methods that can help landscape architects work in an evidence-based manner. This paper examines the implementation of a process model for evidence-based health design in landscape architecture. The model comprises four steps: ‘evidence collection’, ‘programming’, ‘designing’, and ‘evaluation’. The paper aims to demonstrate how the programming step can be implemented in the design of a health-promoting nature trail that is to offer people with mobility disabilities improved mental, physical and social health. We demonstrate how the programming step systematizes evidence into design criteria (evidence-based goals) and design solutions (how the design criteria are to be solved in the design). The results of the study are presented as a design ‘Program’, which we hope can serve as an example for landscape architects of how evidence can be translated into design.


2015 ◽  
Vol 809-810 ◽  
pp. 865-870
Author(s):  
Manuela Roxana Dijmărescu ◽  
Dragoș Iliescu ◽  
Marian Gheorghe

Various architectures exposing certain phases of the design process have been developed. A closer analysis of the presented timelines is leading more to postpone the design solution rather than advancing it in the early phases. This paper advances a new architecture for the design process with the main emphasize on the product functional design, based on functional-constructive knowledge stored in databases, and on the principle of selecting design solutions in an incipient phase and developing them during the further design process stages.


1983 ◽  
Author(s):  
George S. Hazen ◽  
Steve Killing

From the perspective of the design office, this paper examines the manner in which computers are streamlining and changing the design process for today's sailing yachts. Starting with preliminary design and progressing through the more detailed aspects of final design, the computer's varying roles in the design process are traced with examples drawn from currently implemented programs. In addition to its customary role as a bookkeeper, the computer's remarkable graphics capabilities are highlighted. The authors offer a glimpse of what programs and hardware tomorrow's yacht designer will use as frequently as his curves and battens. The paper covers such subjects as design follow-up, sailing analysis and feedback into the original design process. Since designers are not the only ones to benefit from the computer revolution, the authors have included sections on computer generated sailing aids for the yachtsman and possible CAD/CAM applications for the boatbuilder.


2021 ◽  
Vol 27 (1) ◽  
pp. 9-17
Author(s):  
V. P. Bui ◽  
◽  
S. S. Gavruishin ◽  
V. B. Phung ◽  
H. M. Dang ◽  
...  

A new technique is described, used by the authors to automate the design process of the main drive of a new generation machine intended for industrial washing of fruits and vegetables. To solve the problem of multi-criteria design, the original approach is proposed that uses interconnected mathematical models describing the dynamic behavior, strength reliability and functional characteristics of the machine in a unified information space. The generalized mathematical model includes 12 controlled parameters, 16 functional constraints, and 3 quality criteria. A genetic algorithm was used to find the space of Pareto-optimal solutions. The situational approach was used to select the final rational solution from a set of solutions belonging to the Pareto-optimal domain. The rational design of option the washer found using the proposed approach is compared with the existing ones. The proposed design methodology can be recommended for the design of a wide range of similar mechanical structures.


Author(s):  
Yong-Wook Jo ◽  
David Farnsworth ◽  
Jacob Wiest

<p>The Pier 55 project in New York City represents an achievement in design, documentation, fabrication and construction achievable only through recent advances in construction technology. Pier 55 is a new park built over the Hudson River constructed from complex precast concrete. It is a one of its kind pier with a signature design by the Heatherwick Studio that undulates in elevation and is structurally composed of tulip shaped concrete “pots”. Heatherwick's vision required significant collaborative efforts by all involved to define a geometry that satisfied the often-competing needs for prefabrication efficiency, durability, accessibility, design aesthetics and construction feasibility. Arup and Heatherwick developed parametric tools to automate much of the design process so that multiple iterations of geometry could be tested and refined to find optimal solutions. Initial scripts to define surface geometry of the “pot” structures for coordination evolved into additional scripts which created analysis models, full structural geometry, and shop drawing level documentation. As the project moved into construction, Arup and the fabrication team at Fort Miller precast concrete manufacturer and Fab3 steel fabricator utilized the models and scripts generated during the design process for direct digital input of the structural geometry to create complex CNC-milled foam formwork, 3- dimensional rebar documentation, and documentation and digital fabrication of steel components required for assembly and erection of the various pieces by Weeks Marine. This paper will discuss significant innovations including using sophisticated parametric modeling to digitally design, document, fabricate and construct geometrically complex structures.</p>


Author(s):  
Victoria Zhao ◽  
Conrad S. Tucker

Information is transferred through a process consisting of an information source, a transmitter, a channel, a receiver and its destination. Unfortunately, during different stages of the engineering design process, there is a risk of a design idea or solution being incorrectly interpreted due to the nonlinearity of engineering design. I.e., there are many ways to communicate a single design idea or solution. This paper provides a comprehensive review and categorization of the possible sources of information loss at different stages of the engineering design process. Next, the authors present an approach that seeks to minimize information loss during certain stages of the engineering design process. The paper i) explores design process and dissemination methods in engineering design; ii) reviews prior work pertaining to these stages of the engineering design process and iii) proposes an information entropy metric that designers can utilize in order to quantify information loss at different stages of the engineering design process. Knowledge gained from this work will aid designers in selecting a suitable dissemination solution needed to effectively achieve a design solution.


Sign in / Sign up

Export Citation Format

Share Document