scholarly journals Optimization of extraction conditions for secondary biomolecules from various plant species

2016 ◽  
Vol 70 (4) ◽  
pp. 473-483 ◽  
Author(s):  
Filip Sibul ◽  
Dejan Orcic ◽  
Emilija Svircev ◽  
Neda Mimica-Dukic

Extraction of plant secondary metabolites is an essential step in isolation of natural products. Non-optimized extraction conditions can lead to losses, degradation and modification of the biomolecules. In this paper, the influence of different solvent mixtures, solvent amounts, temperature, extraction time, and procedures for defatting on yield and profile of various classes of secondary metabolites was investigated. Rumex alpinus was used for the extraction of anthraquinones, Glycine max for isoflavonoids, Chaerophyllum bulbosum for flavonoids and phenolic acids, Anthriscus sylvestris for lignans and coumarins, alkaloids were extracted from Lupinus albus and sesquiterpene lactones from Artemisia absinthium. Extraction efficiency was evaluated by use of LC-DAD-ESI-MS/MS. The compromise extraction solvent for all of the examined compounds is 80 % methanol, mixed in ratio 13 : 1 with plant material. Maceration should last for six hours, repeated four times with fresh solvent. Defatting of the extracts does not lead to significant losses of the compounds of interest. It is acceptable to use extraction and evaporation temperature of 60?C, while the extracts should be stored in the dark, on -20?C.

Metabolites ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 97 ◽  
Author(s):  
Hammad Ismail ◽  
Anna L. Gillespie ◽  
Danielle Calderwood ◽  
Haroon Iqbal ◽  
Colene Gallagher ◽  
...  

Plant secondary metabolites are protective dietary constituents and rol genes evidently increase the synthesis of these versatile phytochemicals. This study subjected a globally important vegetable, lettuce (Lactuca sativa) to a combination of untargeted metabolomics (LC-QTof-MS) and in vitro bioactivity assays. Specifically, we examined the differences between untransformed cultured lettuce (UnT), lettuce transformed with either rolABC (RA) or rolC (RC) and commercially grown (COM) lettuce. Of the 5333 metabolite features aligned, deconvoluted and quantified 3637, 1792 and 3737 significantly differed in RA, RC and COM, respectively, compared with UnT. In all cases the number of downregulated metabolites exceeded the number increased. In vitro bioactivity assays showed that RA and RC (but not COM) significantly improved the ability of L. sativa to inhibit α-glucosidase, inhibit dipeptidyl peptidase-4 (DPP-4) and stimulate GLP-1 secretion. We putatively identified 76 lettuce metabolites (sesquiterpene lactones, non-phenolic and phenolic compounds) some of which were altered by several thousand percent in RA and RC. Ferulic acid levels increased 3033–9777%, aminooxononanoic acid increased 1141–1803% and 2,3,5,4′tetrahydroxystilbene-2-O-β-d-glucoside increased 40,272–48,008%. Compound activities were confirmed using commercially obtained standards. In conclusion, rol gene transformation significantly alters the metabolome of L.sativa and enhances its antidiabetic properties. There is considerable potential to exploit rol genes to modulate secondary metabolite production for the development of novel functional foods. This investigation serves as a new paradigm whereby genetic manipulation, metabolomic analysis and bioactivity techniques can be combined to enable the discovery of novel natural bioactives and determine the functional significance of plant metabolites.


2021 ◽  
pp. 1-20
Author(s):  
Jasmina Petreska Stanoev ◽  
Marina Stefova ◽  
Jane Bogdanov

BACKGROUND: The beneficial effects of the fruit of Lycium rhutenicum (black goji) have been linked to their polyphenolic profile. OBJECTIVE: Systematic examination of the extraction efficiency of polyphenols from cultivated black goji from Macedonia was carried out using 25 different solvent mixtures containing methanol, acetone or water combined with different acids (hydrochloric, acetic, citric and ascorbic acid). METHODS: An HPLC/DAD/MSn method was used for identification and quantification of phenolic acids, flavonoids, anthocyanins and also spermines and spermidines. RESULTS: The extraction solvent composition was found to have a significant effect on the yield of total as well as specific polyphenols. Pure methanol was found to be more efficient solvent for extraction of total phenolic compounds than pure water or acetone. Ascorbic acid in methanol (2%, m/v) was found to be the most efficient extraction solvent for total phenolic compounds. Aqueous solutions of citric and ascorbic acid gave the highest yield of phenolic acids, spermidines and flavonoids. The anthocyanin content in these extracts was somewhat lower in comparison with the one obtained with methanol/water/ascorbic acid (70 : 28 : 2). The qualitative analysis of the fruits cultivated in Macedonia showed similar polyphenolic pattern and anthocyanin content to the native plant growing in China. CONCLUSIONS: Citric and ascorbic acid can be used as alternative acid components in the extraction mixture.


2020 ◽  
Vol 26 (24) ◽  
pp. 2817-2842
Author(s):  
Ewa Skała ◽  
Joanna Makowczyńska ◽  
Joanna Wieczfinska ◽  
Tomasz Kowalczyk ◽  
Przemysław Sitarek

Background: For a long time, the researchers have been looking for new efficient methods to enhance production and obtain valuable plant secondary metabolites, which would contribute to the protection of the natural environment through the preservation of various plant species, often rare and endangered. These possibilities offer plant in vitro cultures which can be performed under strictly-controlled conditions, regardless of the season or climate and environmental factors. Biotechnological methods are promising strategies for obtaining the valuable plant secondary metabolites with various classes of chemical compounds including caffeoylquinic acids (CQAs) and their derivatives. CQAs have been found in many plant species which are components in the daily diet and exhibit a wide spectrum of biological activities, including antioxidant, immunomodulatory, antihypertensive, analgesic, anti-inflammatory, hepato- and neuroprotective, anti-hyperglycemic, anticancer, antiviral and antimicrobial activities. They have also been found to offer protection against Alzheimer’s disease, and play a role in weight reduction and lipid metabolism control, as well as modulating the activity of glucose-6-phosphatase involved in glucose metabolism. Methods: This work presents the review of the recent advances in use in vitro cultures of various plant species for the alternative system to the production of CQAs and their derivatives. Production of the secondary metabolites in in vitro culture is usually performed with cell suspension or organ cultures, such as shoots and adventitious or transformed roots. To achieve high production of valuable secondary metabolites in in vitro cultures, the optimization of the culture condition is necessary with respect to both biomass accumulation and metabolite content. The optimization of the culture conditions can be achieved by choosing the type of medium, growth regulators or growth conditions, selection of high-productivity lines or culture period, supplementation of the culture medium with precursors or elicitor treatments. Cultivation for large-scale in bioreactors and genetic engineering: Agrobacterium rhizogenes transformation and expression improvement of transcriptional factor or genes involved in the secondary metabolite production pathway are also efficient strategies for enhancement of the valuable secondary metabolites. Results: Many studies have been reported to obtain highly productive plant in vitro cultures with respect to CQAs. Among these valuable secondary metabolites, the most abundant compound accumulated in in vitro cultures was 5-CQA (chlorogenic acid). Highly productive cultures with respect to this phenolic acid were Leonurus sibiricus AtPAP1 transgenic roots, Lonicera macranthoides and Eucomia ulmoides cell suspension cultures which accumulated above 20 mg g-1 DW 5-CQA. It is known that di- and triCQAs are less common in plants than monoCQAs, but it was also possible to obtain them by biotechnological methods. Conclusion: The results indicate that the various in vitro cultures of different plant species can be a profitable approach for the production of CQAs. In particular, an efficient production of these valuable compounds is possible by Lonicera macranthoides and Eucomia ulmoides cell suspension cultures, Leonurus sibiricus transformed roots and AtPAP1 transgenic roots, Echinacea angustifolia adventitious shoots, Rhaponticum carthamoides transformed plants, Lavandula viridis shoots, Sausera involucrata cell suspension and Cichorium intybus transformed roots.


2012 ◽  
Vol 13 (5) ◽  
pp. 632-650 ◽  
Author(s):  
David M. Pereira ◽  
Patricia Valentao ◽  
Georgina Correia-da-Silva ◽  
Natercia Teixeira ◽  
Paula B. Andrade

2020 ◽  
Vol 20 (12) ◽  
pp. 1093-1104 ◽  
Author(s):  
Muhammad Shoaib Ali Gill ◽  
Hammad Saleem ◽  
Nafees Ahemad

Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites (PSMs) almost no data on occurrence in the water cycle are available. These metabolites enter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation and might add to the biological activity of the chemical mixture. To reduce this data gap, we conducted a LC–HRMS target screening in river waters from two different catchments for 150 plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results The screening revealed the presence of 12 out of 150 possibly toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L. Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions Our study provides an overview of potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.


Sign in / Sign up

Export Citation Format

Share Document