scholarly journals Heritability and variance components of grain morphometric traits of bread wheat and durum wheat

2015 ◽  
Vol 60 (3) ◽  
pp. 247-261
Author(s):  
Gordana Brankovic ◽  
Dejan Dodig ◽  
Desimir Knezevic ◽  
Nenad Djuric ◽  
Vesna Kandic

The aim of this work was to examine variability and broad-sense heritability of grain morphometric traits of 30 selected genotypes of bread wheat and durum wheat, in regard to their significant impact on yield and traits of milling, baking and processing quality. Trials with selected wheat assortment were set during 2010-2011 and 2011-2012 years at the three locations: Rimski Sancevi, Zemun Polje and Padinska Skela. Results of this investigation showed that the genotype was the most significant source of variation of grain length for bread and durum wheat with 91.1% and 46.3% of explained sum of squares, while the environment was the most important source of variation of grain width and grain thickness for bread wheat (44% and 41.2% of sum of squares) and durum wheat (42% and 44% of sum of squares). Broad-sense heritability was very high (> 90%) for grain length of bread and durum wheat, grain width of durum wheat and grain thickness of durum wheat. Broad-sense heritability was high for grain width and grain thickness of bread wheat, with the values of 83% and 88.8%, respectively. Considering the high obtained values of broad-sense heritability and dominance of the genetic component of variance of grain length, grain width and grain thickness of bread and durum wheat, the success of selection for increased values of these traits can be predicted.

2004 ◽  
Vol 55 (11) ◽  
pp. 1189 ◽  
Author(s):  
M. Mera ◽  
R. Jerez ◽  
H. Miranda ◽  
J. L. Rouanet

Abstract. The relatively high seed coat proportion of the narrow-leafed lupin reduces its economic value. This character has been shown to be affected by seed weight, and this limits the use of seed coat proportion as a selection criterion. We examined the variation for seed coat specific weight, a potential alternative selection criterion, and tested its relationship with seed coat proportion and seed weight. Seeds were sampled from mainstem pods of 14 winter-sown genotypes of Lupinus angustifolius L. grown at 4 southern Chile sites over 2 years. Seed coat specific weight had an overall mean of 30.1 mg/cm2. Highly significant genotypic effects were found (range 28.9–32.1 mg/cm2). The ranges for sites and years were 29.1–31.1 and 28.9–31.2 mg/cm2, respectively. Genotypes interacted significantly with years, but not with sites. Broad-sense heritability was 0.59, a value that predicts a good response to selection for this character. Seed coat specific weight was weakly correlated (rph = 0.11*) with seed coat proportion, and was not associated with mean seed weight. Seed coat proportion was negatively correlated with mean seed weight (rph = –0.75***) and had high broad-sense heritability (0.95). The correlation between seed coat specific weight and a theoretical seed coat thickness, calculated under the assumptions of equal mass density of seed coat, cotyledons, and embryo, and a spherical-shaped seed, was r = 0.14*. Phenotypic and genotypic correlations between seed coat specific weight and number of seeds per pod were 0.41 and 0.84, respectively. Our results indicate that selection for low seed coat proportion will lead to larger seeded genotypes, but will not reduce seed coat specific weight. Selection for low seed coat proportion after crosses would presumably be effective in reducing seedcoat specific weight if all segregating materials were uniformly large seeded, but that scenario is unrealistic. The evidence presented here suggests that selection for low seed coat specific weight (or measures correlated with it) in segregating populations will be necessary in order to increase the proportion of higher value kernels in seeds and to improve the economic yield of lupins.


1982 ◽  
Vol 62 (4) ◽  
pp. 861-865 ◽  
Author(s):  
P. HUCL ◽  
W. D. BEVERSDORF

Broad sense heritability estimates (H) for ozone (O3) insensitivity in four P. vulgaris F2 populations were high (0.66–0.88) under artifical fumigation conditions. In the F3, under field conditions, broad sense H in two populations had declined to 0.16 and 0.21, probably as a result of the interaction of maturity and injury. The results suggest that selection for O3 insensitivity in early generations should be conducted under controlled fumigation conditions followed by field evaluations as lines approach homozygosity.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Jaenudin Kartahadimaja ◽  
SETYO DWI UTOMO ◽  
ERWIN YULIADI ◽  
ABDUL KADIR SALAM ◽  
WARSONO ◽  
...  

Abstract. Kartahadimaja J, Utomo SD, Yuliadi E, Salam AK, Warsono, Wahyudi A. 2021. Agronomic characters, genetic and phenotypic diversity coefficients, and heritability of 12 genotypes of rice. Biodiversitas 22: 1091-1097. The achievement of national rice production is always below the target. One of the causes is the low productivity of the varieties grown due to the stagnant genetic capacity of these varieties. The assembly of new lines through breeding is one solution that can increase the genetic capacity of new varieties. Genetic diversity is one of the factors that influence the success of plant breeding. Ten new F9 rice lines were successfully assembled showing various phenotypes. The identification of the specific advantages of each of these new rice lines was based largely on the phenotypic response. The research objective was to identify the genetic advantages of each line through the analysis approach of genetic diversity coefficient (GDC), Phenotific Diversity Coefficient (PDC), and broad-sense heritability. The research was designed on a randomized completely block design (RCBD) with ten new F9 rice lines and two comparison varieties as treatments, repeated three times. The variables observed were plant height, maximum number of tillers, number of productive tillers, flowering time, harvesting time, panicle length, number of grain per panicle, number of filled grains per panicle, number of empty grain per panicle, grain length, grain width, grain thickness, and grain yield per hectare. The data were analyzed using Analysis of Variance (ANOVA), if there was a difference between the mean values, it was continued with a 5% LSD test. The results showed that (i) the genotypes tested showed wide genetic and phenotypic diversity, (ii) based on the analysis of GDC, PDC, and broad sense heritability, the appearance of phenotypes of several agronomic characters was controlled by genetic factors.


2012 ◽  
Vol 48 (No. 1) ◽  
pp. 23-32 ◽  
Author(s):  
I. Bellil ◽  
M. Chekara Bouziani ◽  
D. Khelifi

Saharan wheats have been studied particularly from a botanical viewpoint. Genotypic identification, classification and genetic diversity studies to date were essentially based on the morphology of the spike and grain. For this, the allelic variation at the glutenin loci was studied in a set of Saharan bread and durum wheats from Algerian oases where this crop has been traditionally cultivated. The high molecular weight and low molecular weight glutenin subunit composition of 40 Saharan bread and 30 durum wheats was determined by SDS-PAGE. In Saharan bread wheats 32 alleles at the six glutenin loci were detected, which in combination resulted in 36 different patterns including 17 for HMW and 23 for LMW glutenin subunits. For the Saharan durum wheats, 29 different alleles were identified for the five glutenin loci studied. Altogether, 29 glutenin patterns were detected, including 13 for HMW-GS and 20 for LMW-GS. Three new alleles were found in Saharan wheats, two in durum wheat at the Glu-B1 and Glu-B3 loci, and one in bread wheat at the Glu-B1 locus. The mean indices of genetic variation at the six loci in bread wheat and at the five loci in durum wheat were 0.59 and 0.63, respectively, showing that Saharan wheats were more diverse. This information could be useful to select Saharan varieties with improved quality and also as a source of genes to develop new lines when breeding for quality.


Author(s):  
Christian Schulze ◽  
Anne-Catrin Geuthner ◽  
Dietrich Mäde

AbstractFood fraud is becoming a prominent topic in the food industry. Thus, valid methods for detecting potential adulterations are necessary to identify instances of food fraud in cereal products, a significant component of human diet. In this work, primer–probe systems for real-time PCR and droplet digital PCR (ddPCR) for the detection of these cereal species: bread wheat (together with spelt), durum wheat, rye and barley for real-time PCR and ddPCR were established, optimized and validated. In addition, it was projected to validate a molecular system for differentiation of bread wheat and spelt; however, attempts for molecular differentiation between common wheat and spelt based on the gene GAG56D failed because of the genetic variability of the molecular target. Primer–probe systems were further developed and optimized on the basis of alignments of DNA sequences, as well as already developed PCR systems. The specificity of each system was demonstrated on 10 (spelt), 11 (durum wheat and rye) and 12 (bread wheat) reference samples. Specificity of the barley system was already proved in previous work. The calculated limits of detection (LOD95%) were between 2.43 and 4.07 single genome copies in real-time PCR. Based on the “three droplet rule”, the LOD95% in ddPCR was calculated to be 9.07–13.26 single genome copies. The systems were tested in mixtures of flours (rye and common wheat) and of semolina (durum and common wheat). The methods proved to be robust with regard to the tested conditions in the ddPCR. The developed primer–probe systems for ddPCR proved to be effective in quantitatively detecting the investigated cereal species rye and common wheat in mixtures by taking into account the haploid genome weight and the degree of milling of a flour. This method can correctly detect proportions of 50%, 60% and 90% wholemeal rye flour in a mixture of wholemeal common wheat flour. Quantitative results depend on the DNA content, on ploidy of cereal species and are also influenced by comminution. Hence, the proportion of less processed rye is overestimated in higher processed bread wheat and adulteration of durum wheat by common wheat by 1–5% resulted in underestimation of common wheat.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 210
Author(s):  
Sang V. Vu ◽  
Cedric Gondro ◽  
Ngoc T. H. Nguyen ◽  
Arthur R. Gilmour ◽  
Rick Tearle ◽  
...  

Genomic selection has been widely used in terrestrial animals but has had limited application in aquaculture due to relatively high genotyping costs. Genomic information has an important role in improving the prediction accuracy of breeding values, especially for traits that are difficult or expensive to measure. The purposes of this study were to (i) further evaluate the use of genomic information to improve prediction accuracies of breeding values from, (ii) compare different prediction methods (BayesA, BayesCπ and GBLUP) on prediction accuracies in our field data, and (iii) investigate the effects of different SNP marker densities on prediction accuracies of traits in the Portuguese oyster (Crassostrea angulata). The traits studied are all of economic importance and included morphometric traits (shell length, shell width, shell depth, shell weight), edibility traits (tenderness, taste, moisture content), and disease traits (Polydora sp. and Marteilioides chungmuensis). A total of 18,849 single nucleotide polymorphisms were obtained from genotyping by sequencing and used to estimate genetic parameters (heritability and genetic correlation) and the prediction accuracy of genomic selection for these traits. Multi-locus mixed model analysis indicated high estimates of heritability for edibility traits; 0.44 for moisture content, 0.59 for taste, and 0.72 for tenderness. The morphometric traits, shell length, shell width, shell depth and shell weight had estimated genomic heritabilities ranging from 0.28 to 0.55. The genomic heritabilities were relatively low for the disease related traits: Polydora sp. prevalence (0.11) and M. chungmuensis (0.10). Genomic correlations between whole weight and other morphometric traits were from moderate to high and positive (0.58–0.90). However, unfavourably positive genomic correlations were observed between whole weight and the disease traits (0.35–0.37). The genomic best linear unbiased prediction method (GBLUP) showed slightly higher accuracy for the traits studied (0.240–0.794) compared with both BayesA and BayesCπ methods but these differences were not significant. In addition, there is a large potential for using low-density SNP markers for genomic selection in this population at a number of 3000 SNPs. Therefore, there is the prospect to improve morphometric, edibility and disease related traits using genomic information in this species.


2021 ◽  
Author(s):  
Ghasem Eghlima ◽  
Mohsen Sanikhani ◽  
Azizollah Kheiry ◽  
Javad Hadian

Abstract Glycyrrhiza glabra L. is an herbaceous, perennial plant with high distribution in Iran. Genetic variability, heritability and correlation among characters in 22 populations of G. glabra L. were studied. The genetic parameters among the traits including phenotypic variances, genotypic variances, genotype by environment variances, broad-sense heritability and genotypic and phenotypic correlation coefficients were studied. Variance components analysis showed that the extent of phenotypic coefficient of variation (PCV) was fairly higher for all the examined traits compared with genotypic coefficient of variation (GCV). Glabridin (GLA) exhibited high GCV and PCV (156.07% and 156.68%, respectively). The broad sense heritability varied from 38.92–99.79% and narrow sense heritability ranged from 9.70 % to 24.94%. Heritability of GLA, glycyrrhizic acid (GLY), liquiritin (LI), liquiritigenin (LIQ), rutin (RU) and rosmarinic acid (RA) were very high, exhibiting more than 97% heritability. Therefore, these critical characteristics can efficiently be selected and inherited in breeding programs. In most traits, the genotypic correlations showed the same direction as the phenotypic correlations. The contents of GLA and LIQ showed a positive correlation with majority of morphological traits. Therefore, selecting individual plants having desired morphological traits can be correlated with high contents of bioactive compounds in the harvested root.


Sign in / Sign up

Export Citation Format

Share Document