scholarly journals Occurrence and speciation of copper in slags obtained during the pyrometallurgical processing of chalcopyrite concentrates at the Huelva smelter (Spain)

2012 ◽  
Vol 48 (2) ◽  
pp. 161-171 ◽  
Author(s):  
J.C. Fernández-Caliani ◽  
G. Ríos ◽  
J. Martínez ◽  
F. Jiménez

Slags involved in smelting-converting-refining operations to produce blister copper at the Atlantic Copper smelter, in Huelva (Spain), have been investigated by quantitative electron microprobe analysis, X-ray diffraction and digital imaging techniques. The results showed that mechanically entrapped matte particles are the dominant copper losses in the slags. The largest proportion of Cubearing particles (2.0-3.5 vol %) is present in the magnetite-rich converter slags, due to the negative effect of viscosity on coalescence and precipitation of copper matte during conversion. They consist of high-grade matte particles with a core of copper metal rimmed by a copper sulfide phase (Cu2S). The mechanical entrainment of copper matte by slags from both the flash and electric furnaces resulted in copper losses accounting for less than 1.5 vol %, mostly occurring as tiny particles with a stoichiometric composition close to that of bornite (Cu5FeS4). Copper was not found to be enriched in fayalite and magnetite as solid solution.

Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Violeta Vasilache ◽  
Gheorghe Gutt ◽  
Traian Vasilache

The electrochemical deposition of zinc and combinations with elements of the 8th group of the Periodic System (nickel, cobalt, iron) have good properties for anticorrosive protection, compared with pure zinc. For steel pieces, these films delay apparition and formation of white and red iron oxide. We used solutions with different concentrations of zinc chloride, nickel chloride and potassium chloride. To analyze the results we used the optic microscope and the X-ray diffraction.


2014 ◽  
Vol 47 (6) ◽  
pp. 1882-1888 ◽  
Author(s):  
J. Hilhorst ◽  
F. Marschall ◽  
T. N. Tran Thi ◽  
A. Last ◽  
T. U. Schülli

Diffraction imaging is the science of imaging samples under diffraction conditions. Diffraction imaging techniques are well established in visible light and electron microscopy, and have also been widely employed in X-ray science in the form of X-ray topography. Over the past two decades, interest in X-ray diffraction imaging has taken flight and resulted in a wide variety of methods. This article discusses a new full-field imaging method, which uses polymer compound refractive lenses as a microscope objective to capture a diffracted X-ray beam coming from a large illuminated area on a sample. This produces an image of the diffracting parts of the sample on a camera. It is shown that this technique has added value in the field, owing to its high imaging speed, while being competitive in resolution and level of detail of obtained information. Using a model sample, it is shown that lattice tilts and strain in single crystals can be resolved simultaneously down to 10−3° and Δa/a= 10−5, respectively, with submicrometre resolution over an area of 100 × 100 µm and a total image acquisition time of less than 60 s.


2018 ◽  
Vol 24 (S2) ◽  
pp. 14-15
Author(s):  
Amane Kobayashi ◽  
Yuki Takayama ◽  
Tomotaka Oroguchi ◽  
Koji Okajima ◽  
Mao Oide ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Patcharanan Junploy ◽  
Titipun Thongtem ◽  
Somchai Thongtem ◽  
Anukorn Phuruangrat

SrSn(OH)6 precursors synthesized by a cyclic microwave radiation (CMR) process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG) were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl) dye under ultraviolet (UV) radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Angel Sanz ◽  
Joaquín Bastida ◽  
Angel Caballero ◽  
Marek Kojdecki

ABSTRACTCompositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes <D110> of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.


1962 ◽  
Vol 6 ◽  
pp. 74-84
Author(s):  
John V. Gilfrich

AbstractX-ray diffraction studies were made on the Ti–Ni system around the stoichiometric composition of the intermetallic compound TiNi to clarify some confusion which has existed about the phase diagram in this region, and to explain some anomalies in the physical properties of this material. Wrought and cast samples were examined at room temperature both before and after heat treatment and at temperatures both above and below ambient. The compound TiNi does exist at room temperature. The phase purity of the particular sample was found to be greatly affected by such factors as minor variations in composition, heat treatment, and method of sample preparation. Some confirming metallographlc and physical property data will also be presented.


2019 ◽  
Vol 9 (13) ◽  
pp. 2598 ◽  
Author(s):  
M. J. Hernández-Rodríguez ◽  
R. Santana Rodríguez ◽  
R. Darias ◽  
O. González Díaz ◽  
J. M. Pérez Luzardo ◽  
...  

In this study, mortar specimens were prepared with a cement:sand:water ratio of 1:3:0.5, in accordance with standard EN196-1. Portland CEM I 52.5 R grey (G) and white (W) cements were used, together with normalised sand and distilled water. Different amounts of TiO2 photocatalyst were incorporated in the preparation of the mortar samples. The effect of the addition of TiO2 was studied on mechanical properties of the mortar and cement including compressive and flexural strength, consistency (the flow table test), setting time and carbonation. Characterization techniques, including thermogravimetry, mercury porosimetry and X-ray diffraction spectroscopy (XRD), were applied to study the physico-chemical properties of the mortars. It was shown that adding the photocatalyst to the mortar had no negative effect on its properties and could be used to accelerate the setting process. Specimen photoactivity with the incorporated photocatalyst was tested for NOx oxidation in different conditions of humidity (0% RH and 65% RH) and illumination (Vis or Vis/UV), with the results showing an important activity even under Vis radiation.


2008 ◽  
Vol 8 (3) ◽  
pp. 1523-1527 ◽  
Author(s):  
Poulomi Roy ◽  
Suneel Kumar Srivastava

The present work reports the effect of reaction time on solvothermal synthesis of copper sulfides from CuCl2·2H2O and thiourea with various compositions and morphologies using ethylenediamine as solvent at 120 °C. X-ray diffraction patterns of the products at different durations shows the development of different stoichiometric composition of copper sulfides in where Cu:S ratio increases from 1.39 to 1.79 indicating transformation of Cu39S28 to Cu7S4. As inferred by EDX and XPS studies of the final products. SEM shows the growth of bundles of nanorods of length ≈1 μm and diameter in nanometer range are observed after 6 h. On increasing the reaction duration to 9 h, nanorods tends to combines with each other and growth occurs in six directions and after 12 h leads to the formation of flower-like morphology of copper sulfide. The optical properties of these products also have been studied.


Sign in / Sign up

Export Citation Format

Share Document