scholarly journals Crystallization characteristics of B2O3 and TiO2-bearing glassy fluoride-free mold fluxes

2020 ◽  
Vol 56 (2) ◽  
pp. 279-287
Author(s):  
Z. Wang ◽  
Q.-F. Shu ◽  
K.-C. Chou

To explore the effects of TiO2 and/or B2O3 on crystallization of the glassy fluoride-free slag film near the copper mould, the crystallization characteristics of glassy fluoride-free mold fluxes with fluoride being substituted by TiO2 and/or B2O3 were investigated using X- ray diffraction (XRD), scanning electron microscope (SEM) and differential thermal analysis (DTA) techniques. The glass forming ability index (Kgl) of the glassy fluoride-free mold fluxes was studied using Hruby?s method. The XRD and SEM analysis show that Ca2Al2SiO7, CaTiO3 and CaSiO3 are the dominant crystals of this fluoride-free mold fluxes system. With the content of TiO2 increasing from 0 to 7%, the crystallization of Ca2Al2SiO7 and CaSiO3 are inhibited and the formation of CaTiO3 is also weak, so crystallization tendency of the glassy fluoride-free mold fluxes weakens. But as TiO2 content reaches 10%, the crystallization tendency strengthens because of the strong crystallization of CaTiO3. An increase of B2O3 inhibits the crystallization of calcium silicate, so it weakens the crystallization tendency of the glassy fluoride-free mold fluxes. The crystallization processes of the studied fluoride-free mold fluxes correspond to the surface crystallization mechanism. This research provides important reference for further investigation on the heat transfer behavior of the TiO2 and B2O3-bearing slag between copper mould and slab to evaluate the feasibility of B2O3 and TiO2- bearing fluoride-free mold fluxes.

2015 ◽  
Vol 817 ◽  
pp. 582-586 ◽  
Author(s):  
Qing Yang ◽  
Jin Yang Huang ◽  
Jun Tao Zou

The SiO2-B2O3-Al2O3-Na2O-PbO system glass powders were prepared by the high temperature water quenching and ball milling. The effects of CaO, Li2O and ZnO with content of 1~5 wt.% on the glass-forming ability, softening temperature and crystallization behavior of the SiO2-B2O3-Al2O3-Na2O-PbO system glass powders were investigated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The results showed that the glass crystallization tendency became obvious with the increase of CaO and Li2O content, the melting temperature of the glass decreased with the addition of 1% Li2O, while the effect of CaO with content lower than 2% on the formation of glass was not obvious. The addition of ZnO favored the formation of glass, however, the softening temperature of the glass increased with the increase of ZnO content. The softening temperature of the SiO2-B2O3-Al2O3-Na2O-PbO system glass powder decreased by 42.5°C with the addition of 2%CaO-1%Li2O-1%ZnO.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Safa Polat ◽  
Yavuz Sun ◽  
Engin C¸evik

Abstract In this study, it was aimed to investigate the effects of reinforcements used for improving the thermal properties of AA6061 alloy on wear resistance. For this purpose, AA6061 matrix composites were produced by pressure infiltration method using ceramic microparticles (TiB2 and B4C) and graphene nanoparticles (GNPs). The produced composites were first characterized by porosity measurement, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis. Then, the wear behavior was examined under three different loads (20–40–60 N) with the reciprocating ball on the flat method in a dry environment. Specific wear-rates were calculated according to the Archard principle by measuring the depth and width of the traces after tests with a profilometer. Wearing mechanisms were determined with the help of optical and microstructure images. According to the obtained results, it was found that B4C + GNPs reinforced samples were more resistant to abrasion at low loads, but TiB2 + GNPs reinforced samples were higher at higher loads.


Author(s):  
Selma M.H. AL-Jawad ◽  
Zahraa S. Shakir ◽  
Duha S. Ahmed

ZnO/MWCNTs hybrid and doped with different concentration of Nickel element prepared by using Sol-gel been technique reported. All samples were prepared and characterized by X-Ray Diffraction Analysis (XRD), Energy Dispersive X-ray Spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), Field-Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis spectroscopy have been identified the structural, optical and morphological properties. X-ray diffraction showed the polycrystalline nature with hexagonal wutzite structure of hybrid and doped with Nickel. The crystalline size of the hybrid nanostructure was increasing from 23.73 nm to 34.59 nm. Besides, the UV-Vis spectroscopy showed a significant decrease in the band gap values from 2.97 eV to 2.01 eV. Whereas the FE-SEM analysis confirm the formation spherical shapes of ZnO NPs deposited on cylindrical tubes representing the MWCNTs. The antibacterial activity reveals that the inhibition zone of Ni doped-ZnO/MWCNTs hybrid was 28.5 mm, 26.5 mm toward E. coli and S. aureus bacteria, respectively.


2005 ◽  
Vol 46 (12) ◽  
pp. 2799-2802 ◽  
Author(s):  
Akitoshi Mizuno ◽  
Seiichi Matsumura ◽  
Masahito Watanabe ◽  
Shinji Kohara ◽  
Masaki Takata

2013 ◽  
Vol 743-744 ◽  
pp. 120-125
Author(s):  
Zhen Chen ◽  
Ye Mao Han ◽  
Min Zhou ◽  
Rong Jin Huang ◽  
Yuan Zhou ◽  
...  

In the present study, the glass microsphere dispersed Bi-Sb thermoelectric materials have been fabricated through mechanical alloying followed by pressureless sintering. The phase composition and the microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Electrical conductivity, Seebeck coefficient and thermal conductivity were measured in the temperature range of 77~300 K. The ZT values were calculated according to the measurement results. The results showed that the electrical conductivity, Seebeck coefficient and thermal conductivity decreased by adding glass microsphere into Bi-Sb thermoelectric materials. However, the optimum ZT value of 0.24 was obtained at 260 K, which was increased 10% than that of the Bi-Sb matrix. So it is confirmed that the thermoelectric performance of Bi-Sb-based materials can be improved by adding moderate glass microspheres.


2011 ◽  
Vol 236-238 ◽  
pp. 83-86 ◽  
Author(s):  
Xian Hui Sun

The collagen was blended with polyvinyl alcohol (PVA) with the maximum maintenance of the natural structure as precondition. The apparent viscosity and rheology property of PVA-collagen blended solution were studied. the mechanical properties of the blend membrane formed from PVA-collagen blended solution were also determined. The PVA-collagen blended solution was wet spinned with the sodium sulfate as coagulant to prepare PVA-collagen composite fibers. SEM analysis and X-ray diffraction analysis of the PVA-collagen composite fibers were studied. The results indicated that, blended with PVA, the spinning property and mechanical properties of collagen were improved. The figure of the aim fiber transect structure was similar as the kidney, and it had a uniform size. The crystallization degree of the fiber was 55.7%, and it was increased with the increase of the hot extending temperature and the extending ratio.


Sign in / Sign up

Export Citation Format

Share Document