scholarly journals Arsenic removal from water using a one-pot synthesized low-cost mesoporous Fe-Mn-modified biosorbent

2019 ◽  
Vol 84 (3) ◽  
pp. 327-342 ◽  
Author(s):  
Jasmina Nikic ◽  
Malcolm Watson ◽  
Aleksandra Tubic ◽  
Marijana Kragulj-Isakovski ◽  
Snezana Maletic ◽  
...  

This paper investigates the removal of arsenic from water using an environmentally friendly modified biosorbent, chitosan coated with Fe?Mn binary oxide (Chit-FeMn), simply prepared with an one-pot low-cost procedure by simultaneous oxidation and coprecipitation. The sorbent was characterized by SEM, EDS, XRD, FTIR, BET specific surface area, and point of zero charge (pHpzc) measurements. The kinetic data fitted a pseudo-second order model for both As(III) and As(V), suggesting chemical adsorption on the sorbent surface and that intra-particle diffusion is not the only rate-limiting step during adsorption. The adsorption isotherms were best fit to the Freundlich model, and the non-monolayer adsorption model for arsenic on Chit-FeMn is therefore proposed. Below pH 9, the effect of pH on As(III) and As(V) removal by Chit-FeMn was insignificant, with As removals remaining above 85 %. Cl- and NO3 - had negligible influences on As(III) and As(V) removal, whereas PO4 3-, SiO3 2-, CO3 2- and SO4 2- were observed to compete with arsenic species for adsorption sites. The adsorbent was successfully applied to remove arsenic from real arsenic contaminated groundwater samples to below 10 ?g L-1 suggesting that Chit-FeMn is a promising candidate for the low cost removal of both As(V) and As(III) during drinking water treatment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guanhua Xun ◽  
Stephan Thomas Lane ◽  
Vassily Andrew Petrov ◽  
Brandon Elliott Pepa ◽  
Huimin Zhao

AbstractThe need for rapid, accurate, and scalable testing systems for COVID-19 diagnosis is clear and urgent. Here, we report a rapid Scalable and Portable Testing (SPOT) system consisting of a rapid, highly sensitive, and accurate assay and a battery-powered portable device for COVID-19 diagnosis. The SPOT assay comprises a one-pot reverse transcriptase-loop-mediated isothermal amplification (RT-LAMP) followed by PfAgo-based target sequence detection. It is capable of detecting the N gene and E gene in a multiplexed reaction with the limit of detection (LoD) of 0.44 copies/μL and 1.09 copies/μL, respectively, in SARS-CoV-2 virus-spiked saliva samples within 30 min. Moreover, the SPOT system is used to analyze 104 clinical saliva samples and identified 28/30 (93.3% sensitivity) SARS-CoV-2 positive samples (100% sensitivity if LoD is considered) and 73/74 (98.6% specificity) SARS-CoV-2 negative samples. This combination of speed, accuracy, sensitivity, and portability will enable high-volume, low-cost access to areas in need of urgent COVID-19 testing capabilities.


2021 ◽  
Vol 46 (27) ◽  
pp. 13946-13951
Author(s):  
P.C. Nagajyothi ◽  
R. Ramaraghavulu ◽  
K. Munirathnam ◽  
K. Yoo ◽  
Jaesool Shim

2021 ◽  
Vol 14 ◽  
pp. 100585
Author(s):  
Amalia Lara Bursztyn Fuentes ◽  
Facundo Barraqué ◽  
Roberto Carlos Mercader ◽  
Alberto Néstor Scian ◽  
María Luciana Montes

2014 ◽  
Vol 79 (7) ◽  
pp. 815-828 ◽  
Author(s):  
Nikola Ilic ◽  
Slavica Lazarevic ◽  
Vladana Rajakovic-Ognjanovic ◽  
Ljubinka Rajakovic ◽  
Djordje Janackovic ◽  
...  

The sorption of inorganic arsenic species, As(III) and As(V), from water by sepiolite modified with hydrated iron(III) oxide was investigated at 25 ?C through batch studies. The influence of the initial pH value, the initial As concentrations, the contact time and types of water on the sorption capacity was investigated. Two types of water were used, deionized and groundwater. The maximal sorption capacity for As(III) from deionized water was observed at initial and final pH value 7.0, while the bonding of As(V) was observed to be almost pH independent for pH value in the range from 2.0 to 7.0, and the significant decrease in the sorption capacity was observed at pH values above 7.0. The sorption capacity at initial pH 7.0 was about 10 mg g?1 for As(III) and 4.2 mg g?1 for As(V) in deionized water. The capacity in groundwater was decreased by 40 % for As(III) and by 20 % for As(V). The Langmuir model and pseudo-second order kinetic model revealed good agreement with the experimental results. The results show that Fe(III)-modified sepiolite exhibits significant affinity for arsenic removal and it has a potential for the application in water purification processes.


2022 ◽  
Vol 429 ◽  
pp. 132071
Author(s):  
Hongxu Chen ◽  
Jiatao Xu ◽  
Hailong Lin ◽  
Zihan Wang ◽  
Zhidan Liu
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


2012 ◽  
Vol 65 (8) ◽  
pp. 1435-1440 ◽  
Author(s):  
Thiago L. Marques ◽  
Vanessa N. Alves ◽  
Luciana M. Coelho ◽  
Nívia M. M. Coelho

Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0–6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Y. F. Liu ◽  
G. H. Yuan ◽  
Z. H. Jiang ◽  
Z. P. Yao

Mn3O4nanoparticle/graphene sheet (GM) composites were synthesized via a one-pot and low-cost solvothermal process in an ethanol solution. The as-prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Results showed that the nanosized Mn3O4particles had tetragonal hausmannite structure and were successfully loaded on the graphene sheets. Moreover, the electrochemical performances of GM composites produced by different mass percents of Mn2+/graphite oxide (GO) were evaluated by means of cyclic voltammetry and galvanostatic charge-discharge studies. The composite prepared with Mn2+/GO mass percent of 10 : 90 showed a high specific capacitance of 245 F/g at 5 mV/s in the 6 M KOH solution and better long-term stability along with 81% of its initial capacitance after 1200 cycles at 0.5 A/g.


2021 ◽  
Vol 18 ◽  
Author(s):  
Abolfazl Olyaei ◽  
Zahra Ghahremany ◽  
Madieh Sadeghpour

: A green and efficient protocol was developed for the one-pot three-component synthesis of novel 2-(4-hydroxy-2-oxo-2H-chromen-3-yl)-2-(arylamino)-1H-indene-1,3(2H)-dione derivatives by the reaction of 4-hydroxycoumarin, ninhydrin and aromatic amines in the presence of guanidine hydrochloride as an organocatalyst under solvent-free conditions. The present approach offers several advantages such as low cost, simple work-up, short reaction times, chromatography-free purification, high yields and greener conditions.


Sign in / Sign up

Export Citation Format

Share Document