scholarly journals Finite element analysis of spot laser of steel welding temperature history

2009 ◽  
Vol 13 (4) ◽  
pp. 143-150 ◽  
Author(s):  
Khalid Shibib ◽  
Mohammed Minshid ◽  
Mayada Tahir

Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

Author(s):  
Mohammad S. Davoud ◽  
Xiaomin Deng

Predictions of transient temperature distributions in welding can help the selection of welding process parameters that minimize residual stresses. A three-dimensional (3D) thermal finite element model of bead-on-plate gas metal are welding (GMAW) is presented and is used to evaluate a cross-sectional, two-dimensional (2D) counterpart model. While the thermomechanical problem of welding is 3D in nature, it is shown that the 2D model can provide temperature field predictions comparable to those of the 3D model, even though the 2D model tends to predict peak temperatures higher than those of the 3D model. Both types of model predictions are compared to welding test measurements.


Author(s):  
Fadi Al-Badour

Abstract Hybrid Friction Diffusion Bonding (HFDB) is a solid-state welding process that proved its capability of producing sound tube-tubesheet joints, but with limitations on tube thickness (up to 1mm) and tube-tubesheet materials. In the petrochemical industry, there is a great demand for the use of carbon steel shell and tube heat exchangers. To investigate the feasibility of HFDB techniques in joining thicker tube (i.e 2.1 mm) on tubesheet joint, a three-dimensional thermo-mechanical finite element model (FEM) was developed and solved using ABAQUS (commercial finite element analysis (FEA) software). The model was used to predict the temperature distribution and developed stresses during and after welding. The model considered temperature dependent material properties while Johnson-cook model was used to govern material plastic flow behavior. In this paper,19 mm (¾ in) ASTM 179 cold-drawn carbon steel tube into an ASTM A516 Grade 70 tubesheet joints was simulated. Results are validated based on temperature measurements, which was found in good agreement with experimental results. The developed model can be used to optimize processing parameters (i.e. tool rotational speed, dwell time “holding time”, and forging force.. etc) and study their effect on material flow and developed stresses.


2011 ◽  
Vol 314-316 ◽  
pp. 428-431 ◽  
Author(s):  
Hui Du ◽  
Dong Po Wang ◽  
Chun Xiu Liu ◽  
Hai Zhang

To simulate preheating and postweld heat treatment of Q345 steel pipe welding, the finite element model was established. The welding process was simulated by method of the ANSYS element birth and death technique. In this paper, to obtain the distribution of the temperature field and stress field in different situations, preheating processes with two different values of temperature and postweld heat treatment process were simulated respectively. The results show that preheating can homogenize residual stress distribution of the weldment and decrease the residual stress. The heat treatment reduces the residual stress in inner and outer walls by 24% and 70% respectively and the stress distribution is more even and stress concentration is reduced.


2019 ◽  
Vol 796 ◽  
pp. 175-182
Author(s):  
Mohamad Nizam Ayof ◽  
Ruzaini Mohd Nawi ◽  
Nur Izan Syahriah Hussein ◽  
Nor Zulaikha Zainol

Welding process is an efficient joining process of metals that is achieved by gas metal arc welding (GMAW) process. Localized heating during welding process can result in distortion of the welded plate. The estimation of magnitude and distribution of distortion are important to maintain the quality of products. Finite element method is implemented to investigate the distortions behavior of thin steel plate, cold rolled (SPCC) material in lap joint using GMAW process. A three-dimensional, two-step thermomechanical finite element model study was applied to analyze and evaluate distortion behavior in lap joint. The result of distortion from finite element analysis (FEA) was compared to experimental data to validate the accuracy of the method.


2011 ◽  
Vol 261-263 ◽  
pp. 702-706
Author(s):  
Rui Jie Wang ◽  
He Ming Cheng ◽  
Bao Dong Shao ◽  
Jian Yun Li

A finite element model of not wholly quenched steel fatigue specimen is established. Hardness value of some distance to work piece surface are assumed different and cyclic strength coefficients of different zones are different, both is assumed to be proportional to hardness value. Elasto-plastic finite element analysis was carried out for this model. According to the stress-strain distribution on transverse section, the effect of not wholly quenched on fatigue crack initiation life is analyzed.


2016 ◽  
Vol 21 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Pedro Hernández Gutiérrez ◽  
Francisco Cepeda Rodríguez ◽  
Jose Jorge Ruiz Mondragón ◽  
Jorge Leobardo Acevedo Dávila ◽  
Martha Patricia Guerrero Mata ◽  
...  

Abstract The aim of this research is to present a comparative analysis between theoretical and experimental thermal fields as well as a microstructural behaviour and residual stresses applying multiple weld beads in the joint of two API 5L X52 pipe sections. The thermal field, microstructural and residual stresses were numerically modelled through the finite element method (FEM) and compared to experimentally. The simulation conditions used in the FEM analysis were similar considerations to the underwater welding conditions. The finite element analysis was carried out, first by a non-linear transient thermal analysis for obtaining the global temperature history generated during the underwater welding process. Subsequently, a microstructural behaviour was determined using the temperatures distribution obtained in the pipe material by calculating the structural transformations of the material during the welding process, and finally a stress analysis was developed using the temperatures obtained from the thermal analysis. It was found that this simulation method can be used efficiently to determinate with accuracy the optimum welding parameters of this kind of weld applications.


2013 ◽  
Vol 821-822 ◽  
pp. 1410-1413 ◽  
Author(s):  
Xue Bin Liu ◽  
Xi Bin Wang ◽  
Chong Ning Li ◽  
San Peng Deng

In view of orthogonal cutting, finite element simulation geometry is built. the friction model, thermal conduction model and chip separation model are established between chip and tool using Abaqus which is a finite element analysis software. Through a specific example, two-dimensional finite element model have been established, simulating the cutting process stress distribution of the work piece surface is also obtained during processing. While simulation analyzes the relationship between the rake angle and shear angle, the results of simulation and experiment are basically the same, thus further verify the credibility of Abaqus simulation results on orthogonal cutting, and the feasible is also proved of obtaining cutting data by the use of Abaqus simulation cutting process.


Author(s):  
Gihad Karrar ◽  
A. N. Shuaib ◽  
F. A. Al-Badour ◽  
N. Merah ◽  
A. K. Mahgoub

This paper presents the results of studying friction stir butt welding of commercial pure copper plates using both experimental and finite element analysis methods. The experimental work consisted of making a butt joint to 4 mm copper plates using friction stir welding process at constant rotational speed of the pin tool to evaluate the effect of welding speed on weld quality. Weld quality was evaluated by the joints tensile strength, micro hardness, as well as evolution of the developed microstructure across the welding zone. A coupled Eulerian Lagrangian (CEL) finite element (FE) model had been developed to simulate the friction stir butt welding process, and predict the temperature distributions across the weld, as well as developed welding stresses. Axial load and temperature measurements results from the experiments have been used to validate the finite element model.


2021 ◽  
Author(s):  
Ping Hu ◽  
Quan Cheng ◽  
Hai rui Xing ◽  
Shi lei Li ◽  
Jia yu Han ◽  
...  

Abstract Rare molybdenum resources have been increasingly involved in heavy industries. In this paper, the common unidirectional and cross hot rolling operations, for pure molybdenum plate, are numerically simulated by using MSC. Marc software. An elastic-plastic finite element model is employed together with updated Lagrange method to predict stress and strain fields in the work-piece. The results showed that there was a typical three-dimensional additional compressive stress ( σy > σx > σz ) in deformation zone, while strain could be divided into uniaxial compressive strain and biaxial tensile strain ( Ey > Ex > Ez ). Tensile stress σx increased with the accumulation of reduction and the decrease of friction coefficient at the edge of width spread. More importantly, the interlaced deformation caused by cross commutation was helpful to repair the severe anisotropy created by unidirectional hot rolling. By comparing the theoretical verification of rolling forces and the measured temperatures with the simulated values, eventually, it is demonstrated that the model is aligning well with the actual engineering.


2018 ◽  
Vol 764 ◽  
pp. 184-193
Author(s):  
Wen Guo Huo ◽  
Xiang Yu Zhang ◽  
Qing Yun Dong ◽  
Juan Shao

The paper presents the simulated 3D Finite Element Model (FEM) while grinding the Ti6Al4V alloy using a single abrasive wheel. Grinding simulation was carried out using a Lagrangian finite element based machining model to predict the tangential cutting force, temperature distribution at grinding zone and the effective stress and strain. All simulations were performed according to the cutting conditions designed, using the plane up-grinding. The work piece was considered as typical materials to machine difficulty. As the cutting speed is increased from 15 m/min to 33 m/min at higher feed rate, a maximum value of 750 MPa stress and higher temperature localization to an extent of 900°C at grinding zone were observed.


Sign in / Sign up

Export Citation Format

Share Document