scholarly journals Experimental determination of tunnel ventilation axial ducted fan performance

2016 ◽  
Vol 20 (1) ◽  
pp. 209-221 ◽  
Author(s):  
Milan Sekularac

To investigate traffic tunnel ventilation flows, a scaled model of a traffic tunnel with longitudinal ventilation system based on ducted fans is used. Flows in tunnels are influenced by tunnel geometry, fan characteristics, ventilation operation scenario, vehicle traffic, atmospheric factors, etc. To analyze flow fields of tunnels in detail, knowledge of tunnel jet-fan properties and turbulent flow characteristics at the fan exit are required, and can be used as input data for CFD boundary conditions of tunnel flow computation. For this purpose experimental measurements were done using the hot wire anemometry technique. The obtained results, trough ensemble-averaged and time averaged profiles of all velocity components, turbulence intensity, turbulent kinetic energy, integral flow length scales, available Reynolds stresses, Turbulent kinetic energy production rates and the fan thrust performance, are presented. These data allow us to analyze in more detail the influence of fan flow on energy and pollutant removal efficiencies of the tunnel ventilation and to evaluate accuracy of CFD studies on fan improvements.

Author(s):  
Maxime Thiébaut ◽  
Jean-François Filipot ◽  
Christophe Maisondieu ◽  
Guillaume Damblans ◽  
Rui Duarte ◽  
...  

Two coupled four-beam acoustic Doppler current profilers were used to provide simultaneous and independent measurements of the turbulent kinetic energy (TKE) dissipation rate ε and the TKE production rate P over a 36 h long period at a highly energetic tidal energy site in the Alderney Race. The eight-beam arrangement enabled the evaluation of the six components of the Reynolds stress tensor which allows for an improved estimation of the TKE production rate. Depth-time series of ε, P and the Reynolds stresses are provided. The comparison between ε and P was performed by calculating individual ratios of ε corresponding to P . The depth-averaged ratio ε / P averaged over whole flood and ebb tide were found to be 2.2 and 2.8 respectively, indicating that TKE dissipation exceeds TKE production. It is shown that the term of diffusive transport of TKE is significant. As a result, non-local transport is important to the TKE budget and the common assumption of a local balance, i.e. a balance between production and dissipation, is not valid at the measurement site. This article is part of the theme issue ‘New insights on tidal dynamics and tidal energy harvesting in the Alderney Race’.


2017 ◽  
Vol 34 (6) ◽  
pp. 1267-1284 ◽  
Author(s):  
Maricarmen Guerra ◽  
Jim Thomson

AbstractTwo new five-beam acoustic Doppler current profilers—the Nortek Signature1000 AD2CP and the Teledyne RDI Sentinel V50—are demonstrated to measure turbulence at two energetic tidal channels within Puget Sound, Washington. The quality of the raw data is tested by analyzing the turbulent kinetic energy frequency spectra, the turbulence spatial structure function, the shear in the profiles, and the covariance Reynolds stresses. The five-beam configuration allows for a direct estimation of the Reynolds stresses from along-beam velocity fluctuations. The Nortek’s low Doppler noise and high sampling frequency allow for the observation of the turbulent inertial subrange in both the frequency spectra and the turbulence structure function. The turbulence parameters obtained from the five-beam acoustic Doppler current profilers are validated with turbulence data from simultaneous measurements with acoustic Doppler velocimeters. These combined results are then used to assess a turbulent kinetic energy budget in which depth profiles of the turbulent kinetic energy dissipation and production rates are compared. The associated codes are publicly available on the MATLAB File Exchange website.


2016 ◽  
Vol 799 ◽  
pp. 297-333 ◽  
Author(s):  
Yu Chen ◽  
J. M. Floryan ◽  
Y. T. Chew ◽  
B. C. Khoo

The changes in discharge in pressure-driven flows through channels with longitudinal grooves have been investigated in the laminar flow regime and in the turbulent flow regime with moderate Reynolds numbers ($Re_{2H}\approx 6000$) using both analytical and numerical methodologies. The results demonstrate that the long-wavelength grooves can increase discharge by 20 %–150 %, depending on the groove amplitude and the type of flow, while the short-wavelength grooves reduce the discharge. It has been shown that the reduced geometry model applies to the analysis of turbulent flows and the performance of grooves of arbitrary form is well approximated by the performance of grooves whose shape is represented by the dominant Fourier mode. The flow patterns, the turbulent kinetic energy as well as the Reynolds stresses were examined to identify the mechanisms leading to an increase in discharge. It is shown that the increase in discharge results from the rearrangement of the bulk fluid movement and not from the suppression of turbulence intensity. The turbulent kinetic energy and the Reynolds stresses are rearranged while their volume-averaged intensities remain the same as in the smooth channel. Analysis of the interaction of the groove patterns on both walls demonstrates that the converging–diverging configuration results in the greatest increase in discharge while the wavy channel configuration results in a reduction in discharge.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1481
Author(s):  
Xinrui Li ◽  
Zhenggui Li ◽  
Baoshan Zhu ◽  
Weijun Wang

To study the effect of tip clearance on unsteady flow in a tubular turbine, a full-channel numerical calculation was carried out based on the SST k–ω turbulence model using a power-plant prototype as the research object. Tip leakage flow characteristics of three clearance δ schemes were compared. The results show that the clearance value is directly proportional to the axial velocity, momentum, and flow sum of the leakage flow but inversely proportional to turbulent kinetic energy. At approximately 35–50% of the flow direction, velocity and turbulent kinetic energy of the leakage flow show the trough and peak variation law, respectively. The leakage vortex includes a primary tip leakage vortex (PTLV) and a secondary tip leakage vortex (STLV). Increasing clearance increases the vortex strength of both parts, as the STLV vortex core overlaps Core A of PTLV, and Core B of PTLV becomes the main part of the tip leakage vortex. A “right angle effect” causes flow separation on the pressure side of the tip, and a local low-pressure area subsequently generates a separation vortex. Increasing the gap strengthens the separation vortex, intensifying the flow instability. Tip clearance should therefore be maximally reduced in tubular turbines, barring other considerations.


1993 ◽  
Vol 115 (1) ◽  
pp. 109-114 ◽  
Author(s):  
T.-M. Liou ◽  
Y.-Y. Wu ◽  
Y. Chang

Laser-Doppler velocimeter measurements of mean velocities, turbulence intensities, and Reynolds stresses are presented for periodic fully developed flows in a channel with square rib-disturbed walls on two opposite sides. Quantities such as the vorticity thickness and turbulent kinetic energy are used to characterize the flow. The investigated flow was periodic in space. The Reynolds number based on the channel hydraulic diameter was 3.3×104. The ratios of pitch to rib-height and rib-height to chamber-height were 10 and 0.133, respectively. Regions where maximum and minimum Reynolds stress and turbulent kinetic energy occurred were identified from the results. The growth rate of the shear layers of the present study was compared with that of a backward-facing step. The measured turbulence anisotropy and structure parameter distribution were used to examine the basic assumptions embedded in the k–ε and k–ε–A models. For a given axial station, the peak axial mean-velocity was found not to occur at the center point. The secondary flow was determined to be Prandtl’s secondary flow of the second kind according to the measured streamwise mean vorticity and its production term.


2017 ◽  
Vol 9 (4) ◽  
pp. 235-252 ◽  
Author(s):  
Craig WA Murray ◽  
David Anderson

Future integration of small unmanned aircraft within an urban airspace requires an a posteriori understanding of the building-induced aerodynamics which could negatively impact on vehicle performance. Moving away from generalised building formations, we model the centre of the city of Glasgow using Star-CCM+, a commercial CFD package. After establishing a critical turbulent kinetic energy for our vehicle, we analyse the CFD results to determine how best to operate a small unmanned aircraft within this environment. As discovered in a previous study, the spatial distribution of turbulence increases with altitude. It was recommended then that UAVs operate at the minimal allowable altitude within a congested area. As the flow characteristics in an environment are similar, regardless of inlet velocity, we can determine areas within a city which will have consistently low or high values of turbulent kinetic energy. As the distribution of turbulence is dependent on prevailing wind directions, some directions are more favourable than others, even if the wind speed is unchanging. Moving forward we should aim to gather more information about integrated aircraft and how they respond to turbulence in a congested area.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner

Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120% and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20 and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stress to this process is explored in detail.


2009 ◽  
Vol 633 ◽  
pp. 191-231 ◽  
Author(s):  
MARCO SIMIANO ◽  
D. LAKEHAL ◽  
M. LANCE ◽  
G. YADIGAROGLU

The detailed investigation of an unstable meandering bubble plume created in a 2-m-diameter vessel with a water depth of 1.5 m is reported for void fractions up to 4% and bubble size of the order of 2.5 mm. Simultaneous particle image velocity (PIV) measurements of bubble and liquid velocities and video recordings of the projection of the plume on two vertical perpendicular planes were produced in order to characterize the state of the plume by the location of its centreline and its equivalent diameter. The data were conditionally ensemble averaged using only PIV sets corresponding to plume states in a range as narrow as possible, separating the small-scale fluctuations of the flow from the large-scale motions, namely plume meandering and instantaneous cross-sectional area fluctuations. Meandering produces an apparent spreading of the average plume velocity and void fraction profiles that were shown to remain self-similar in the instantaneous plume cross-section. Differences between the true local time-average relative velocities and the difference of the averaged phase velocities were measured; the complex variation of the relative velocity was explained by the effects of passing vortices and by the fact that the bubbles do not reach an equilibrium velocity as they migrate radially, producing momentum exchanges between high- and low-velocity regions. Local entrainment effects decrease with larger plume diameters, contradicting the classical dependence of entrainment on the time-averaged plume diameter. Small plume diameters tend to trigger ‘entrainment eddies’ that promote the inward-flow motion. The global turbulent kinetic energy was found to be dominated by the vertical stresses. Conditional averages according to the plume diameter showed that the large-scale motions did not affect the instantaneous turbulent kinetic energy distribution in the plume, suggesting that large scales and small scales are not correlated. With conditional averaging, meandering was a minor effect on the global kinetic energy and the Reynolds stresses. In contrast, plume diameter fluctuations produce a substantial effect on these quantities.


1992 ◽  
Vol 237 ◽  
pp. 301-322 ◽  
Author(s):  
Ji Ryong Cho ◽  
Myung Kyoon Chung

By considering the entrainment effect on the intermittency in the free boundary of shear layers, a set of turbulence model equations for the turbulent kinetic energy k, the dissipation rate ε, and the intermittency factor γ is proposed. This enables us to incorporate explicitly the intermittency effect in the conventional K–ε turbulence model equations. The eddy viscosity νt is estimated by a function of K, ε and γ. In contrast to the closure schemes of previous intermittency modelling which employ conditional zone averaged moments, the present model equations are based on the conventional Reynolds averaged moments. This method is more economical in the sense that it halves the number of partial differential equations to be solved. The proposed K–ε–γ model has been applied to compute a plane jet, a round jet, a plane far wake and a plane mixing layer. The computational results of the model show considerable improvement over previous models for all these shear flows. In particular, the spreading rate, the centreline mean velocity and the profiles of Reynolds stresses and turbulent kinetic energy are calculated with significantly improved accuracy.


Sign in / Sign up

Export Citation Format

Share Document