scholarly journals Effect of biodiesel on diesel engine emissions

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1483-1498 ◽  
Author(s):  
Boban Nikolic ◽  
Breda Kegl ◽  
Sasa Milanovic ◽  
Milos Jovanovic ◽  
Zivan Spasic

Extensive research has been carried out with regard to the composition of the exhaust gases of Diesel engines in operation with biodiesel in relation to the operation with the conventional diesel fuel. Producing biodiesel from different raw materials and different technological biodiesel production processes can result in different individual physical and chemical characteristics of fuel. Generally, it can be said that the use of biodiesel (and mixtures) reduces the overall toxicity of the exhaust gases in relation to the operation of the engine with diesel fuel, and this is a significant environmental potential of biodiesel as a fuel for Diesel engines. However, there is a diversity of research results, due to different factors. The paper reviews and summarizes the relevant literature on the mentioned research that can contribute to the explanation of these effects. It also points to the need for a very careful selection of biodiesel for use as a Diesel engine fuel.

2020 ◽  
pp. 22-30
Author(s):  
SERGEY N. DEVYANIN ◽  
◽  
VLADIMIR A. MARKOV ◽  
ALEKSANDR G. LEVSHIN ◽  
TAMARA P. KOBOZEVA ◽  
...  

The paper presents the results of long-term research on the oil productivity and chemical composition of soybean oil of the Northern ecotype varieties in the Central Non-Black Earth Region. The authors consider its possible use for biodiesel production. Experiments on growing soybeans were carried out on the experimental fi eld of Russian State Agrarian University –Moscow Timiryazev Agricultural Academy (2008-2019) on recognized ultra-early ripening varieties of the Northern ecotype Mageva, Svetlaya, Okskaya (ripeness group 000). Tests were set and the research results were analyzed using standard approved methods. It has been shown that in conditions of high latitudes (57°N), limited thermal resources of the Non-Chernozem zone of Russia (the sum of active temperatures of the growing season not exceeding 2000°С), the yield and productivity of soybeans depend on the variety and moisture supply. Over the years, the average yield of soybeans amounted to 1.94 … 2.62 t/ha, oil productivity – 388 … 544 kg/ha, oil content – 19…20%, the content of oleic and linoleic fatty acids in oil – 60%, and their output from seeds harvested – 300 kg/ha. It has been established that as soybean oil and diesel fuel have similar properties,they can be mixed by conventional methods in any proportions and form stable blends that can be stored for a long time. Experimental studies on the use of soybean oil for biodiesel production were carried out on a D-245 diesel engine (4 ChN11/12.5). The concentrations of toxic components (CO, CHx, and NOx) in the diesel exhaust gases were determined using the SAE-7532 gas analyzer. The smoke content of the exhaust gases was measured with an MK-3 Hartridge opacimeter. It has been experimentally established that the transfer of a diesel engine from diesel fuel to a blend of 80% diesel fuel and 20% lubrication oil leads to a change in the integral emissions per test cycle: nitrogen oxides in 0.81 times, carbon monoxide in 0.89 times and unburned hydrocarbons in 0.91 times, i.e. when biodiesel as used as a motor fuel in a serial diesel engine, emissions of all gaseous toxic components are reduced. The study has confi rmed the expediency of using soybeans of the Northern ecotype for biofuel production.


Author(s):  
Tomi R. Krogerus ◽  
Mika P. Hyvönen ◽  
Kalevi J. Huhtala

Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.


Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


2016 ◽  
Vol 5 (5) ◽  
pp. 8-21
Author(s):  
Неверова ◽  
V. Neverova ◽  
Марков ◽  
V. Markov ◽  
Бовэнь ◽  
...  

The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. Fuels produced from vegetable oils and animal fats as advanced alternative fuels for diesel engines are considered. These fuels are produced from renewable raw materials and are characterized by good environmental qualities. Advantages of using fuels of vegetable origin as motor fuels are shown. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and mustard oil of various percentage is given. One of the most wide spread vegetable oils in Russia is mustard oil. Possible ways of using mustard oil as fuel for a diesel engine are considered. An opportunity of improving characteristics of exhaust gases toxicity by using these mixtures as a fuel for automobile and tractor diesel engines is demonstrated.


2019 ◽  
Vol 140 ◽  
pp. 11004
Author(s):  
Vladimir Markov ◽  
Vyacheslav Kamaltdinov ◽  
Larisa Bykovskaya ◽  
Bowen Sa

The significance of the paper is confirmed by the need to replace petroleum motor fuels with fuels produced from alternative energy sources. Biofuels derived from various vegetable resources are considered as promising alternative fuels for diesel engines. These fuels offer significant advantages with respect to the renewability of their raw materials and good emission performances when burned in ICEs. The main problem of using vegetable oils as biofuels for diesel engines is their high viscosity. This problem can be resolved by using mixed biofuels with the addition of gasoline. The analysis of physico-chemical properties of petroleum diesel fuel (DF) and mixed biofuels containing petroleum DF, rapeseed oil (RO) and AI-80 automotive gasoline was conducted. Experimental studies of the D-245.12S diesel fuelled with these mixed fuels were carried out. The mixed fuels were prepared from 80% DF + 20% RO, from 75% DF + 20% RO + 5% AI-80, and from 70% DF + 20% RO + 10% AI-80. It was shown that the addition of gasoline to mixed biofuels could improve two main toxicity indicators of exhaust gases exhaust gases smoke and emissions of nitrogen oxides. The best emission performance was achieved for the mixture of 70% DF, 20% RO and 10% AI-80. When the diesel engine was switched from the mixture of 80% DF and 20% RO to the mixture of 70% DF, 20% RO and 10% AI-80, the exhaust gases smoke at maximum torque mode decreased from 17.5 to 14.5% on the Hartridge scale, i.e. by 17.1%. The specific emissions of nitrogen oxides decreased from 6.559 to 6.154 g/(kW·h), i.e. by 6.2%.


Fuel ◽  
2014 ◽  
Vol 132 ◽  
pp. 7-11 ◽  
Author(s):  
Gökhan Tüccar ◽  
Erdi Tosun ◽  
Tayfun Özgür ◽  
Kadir Aydın

2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2021 ◽  
Vol 2 (143) ◽  
pp. 54-61
Author(s):  
Sergey V. Borisov ◽  
◽  
Aleksandr E. Lomovskikh ◽  
Oleg E. Prilepin ◽  
Timur R. Mamatkazin ◽  
...  

Improving the parameters of diesel engines is an urgent task. Work has been carried out to significantly reduce the consumption of their fuel with the introduction of water dispersions into the fuel. Currently, water-fuel emulsions with exotic emulsifiers are mainly tested. (Research purpose) The research purpose is in creation of a water-fuel emulsion without an emulsifier with a simple installation and identifying the influence of the composition and quality of this WFE on the performance of the YaMZ-236 diesel engine. (Materials and methods) The article presents a plant for the preparation of a "rough" water- fuel mixture from diesel fuel according to GOST 32511-2013 and distilled water according to GOST 6709. Authors conducted standard bench tests at the KI-5540- GOSNITI stand with a YaMZ-236 diesel engine with an upgraded fuel system and performed the control of the smoke content of the exhaust gases with the gas analyzer "AUTOTEST". The dependence of diesel performance indicators on the composition and dispersion of water-fuel emulsions without an emulsifier was studied experimentally with a minimum number of tests, but with the maximum possible combination of the values of three variable factors. (Results and discussion) The influence of various water-fuel emulsions on the performance of the diesel engine was evaluated according to the plan of a full factor experiment, including 20 tests. The second-order regression equations were obtained by mathematical processing of the test results. The feasibility of using water-fuel emulsions for diesel engines was confirmed. By modeling a water-fuel mixture without emulsifiers, there was created an aqueous dispersion with drops up to two micrometers. In the load tests of the diesel engine with it, there was noticed an improvement in its performance. (Conclusions) The introduction of 17-20 percent water dispersion with drops of up to two micrometers into diesel fuel reduced the specific fuel consumption by 18 percent, the smokiness in the K indicator by 20- 22, and in the N indicator by 30-35 percent.


Sign in / Sign up

Export Citation Format

Share Document