STUDYING OF THE EFFECT OF WATER-FUEL MIXTURE ON OPERATIONAL PARAMETERS OF A DIESEL

2021 ◽  
Vol 2 (143) ◽  
pp. 54-61
Author(s):  
Sergey V. Borisov ◽  
◽  
Aleksandr E. Lomovskikh ◽  
Oleg E. Prilepin ◽  
Timur R. Mamatkazin ◽  
...  

Improving the parameters of diesel engines is an urgent task. Work has been carried out to significantly reduce the consumption of their fuel with the introduction of water dispersions into the fuel. Currently, water-fuel emulsions with exotic emulsifiers are mainly tested. (Research purpose) The research purpose is in creation of a water-fuel emulsion without an emulsifier with a simple installation and identifying the influence of the composition and quality of this WFE on the performance of the YaMZ-236 diesel engine. (Materials and methods) The article presents a plant for the preparation of a "rough" water- fuel mixture from diesel fuel according to GOST 32511-2013 and distilled water according to GOST 6709. Authors conducted standard bench tests at the KI-5540- GOSNITI stand with a YaMZ-236 diesel engine with an upgraded fuel system and performed the control of the smoke content of the exhaust gases with the gas analyzer "AUTOTEST". The dependence of diesel performance indicators on the composition and dispersion of water-fuel emulsions without an emulsifier was studied experimentally with a minimum number of tests, but with the maximum possible combination of the values of three variable factors. (Results and discussion) The influence of various water-fuel emulsions on the performance of the diesel engine was evaluated according to the plan of a full factor experiment, including 20 tests. The second-order regression equations were obtained by mathematical processing of the test results. The feasibility of using water-fuel emulsions for diesel engines was confirmed. By modeling a water-fuel mixture without emulsifiers, there was created an aqueous dispersion with drops up to two micrometers. In the load tests of the diesel engine with it, there was noticed an improvement in its performance. (Conclusions) The introduction of 17-20 percent water dispersion with drops of up to two micrometers into diesel fuel reduced the specific fuel consumption by 18 percent, the smokiness in the K indicator by 20- 22, and in the N indicator by 30-35 percent.

Author(s):  
Bagus Lutfiwijaya ◽  
Akhmad Syarief ◽  
Sigit Mujiarto

Used hydraulic oil SAE 10 is a waste activities that are often found in Indonesia, especially in mining and plantantion scale hydraulic large. Waste used oil SAE 10 can be used as a fuel mixture of hydrocarbons is done by mixing the used oil hydraulic SAE 10 with other fuels such as gasoline, kerosene, diesel fuel with the addition of a maximum percentage of less than 50%. this research tries to investigate exhaust emissions on diesel engines with hydraulic mixing used oil into diesel fuel with a mixture of different variations. The machine used is a four-stroke diesel engine with a maximum power of 4.4 kW. Be based testing has been done variations of a mixture of 5% and 10 % is still within the allowed limits.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


Transport ◽  
2010 ◽  
Vol 25 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Sergejus Lebedevas ◽  
Galina Lebedeva ◽  
Violeta Makarevičienė ◽  
Irina Kazanceva ◽  
Kiril Kazancev

The article explores the possibilities of using fatty acid methyl esters derived from the oil of a new species of oily plant Camelina sativa not demanding on soil. The performed research on the physical and chemical properties of pure methyl esters from Camelina sativa show that biofuels do not meet requirements for the biodiesel fuel standard (LST EN 14214:2009) of a high iodine value and high content of linoleic acid methyl ester, so they must be mixed with methyl esters produced from pork lard the content of which in the mixture must be not less than 32%. This article presents the results of tests on combustion emission obtained when three‐cylinder diesel engine VALMET 320 DMG was fuelled with a mixture containing 30% of this new kind of fuel with fossil diesel fuel comparing with emissions obtained when the engine was fuelled with a fuel mixture containing 30% of conventional biodiesel fuel (rapeseed oil methyl esters) with fossil diesel fuel. The obtained results show that using both types of fuel, no significant differences in CO and NOx concentrations were observed throughout the tested load range. When operating on fuels containing methyl esters from Camelina sativa, HC emissions decreased by 10 to 12% and the smokeness of exhaust gas by 12 to 25%.


Author(s):  
Tomi R. Krogerus ◽  
Mika P. Hyvönen ◽  
Kalevi J. Huhtala

Diesel engines are widely used due to their high reliability, high thermal efficiency, fuel availability, and low consumption. They are used to generate power, e.g., in passenger cars, ships, power plants, marine offshore platforms, and mining and construction machines. The engine is at heart of these applications, so keeping it in good working condition is vital. Recent technical and computational advances and environmental legislation have stimulated the development of more efficient and robust techniques for the diagnostics of diesel engines. The emphasis is on the diagnostics of faults under development and the causes of engine failure or reduced efficiency. Diesel engine fuel injection plays an important role in the development of the combustion in the engine cylinder. Arguably, the most influential component of the diesel engine is the fuel injection equipment; even minor faults can cause a major loss of efficiency of the combustion and an increase in engine emissions and noise. With increased sophistication (e.g., higher injection pressures) being required to meet continuously improving noise, exhaust smoke, and gaseous emission regulations, fuel injection equipment is becoming even more susceptible to failure. The injection systems have been shown to be the largest contributing factor in diesel engine failures. Extracting the health information of components in the fuel injection system is a very demanding task. Besides the very time-consuming nature of experimental investigations, direct measurements are also limited to selected observation points. Diesel engine faults normally do not occur in a short timeframe. The modeling of typical engine faults, particularly combustion related faults, in a controlled manner is thus vital for the development of diesel engine diagnostics and fault detection. Simulation models based on physical grounds can enlarge the number of studied variables and also obtain a better understanding of localized phenomena that affect the overall behavior of the system. This paper presents a survey of the analysis, modeling, and diagnostics of diesel fuel injection systems. Typical diesel fuel injection systems and their common faults are presented. The most relevant state of the art research articles on analysis and modeling of fluid injection systems as well as diagnostics techniques and measured signals describing the behavior of the system are reviewed and the results and findings are discussed. The increasing demand and effect of legislation related to diagnostics, especially on-board diagnostics (OBD), are discussed with reference to the future progress of this field.


Author(s):  
G D Zhang ◽  
H Liu ◽  
X X Xia ◽  
W G Zhang ◽  
J H Fang

The physical and chemical properties of some oxygenated compounds are discussed, including dimethoxymethane (methylal, or DMM), dimethyl carbonate (DMC), and ethyl acetate. In particular, DMC may be a promising additive for diesel fuel owing to its high oxygen content, no carbon-carbon atomic bonds, suitable boiling point, and solubility in diesel fuel. The aim of this research was to study the combustion characteristics and performance of diesel engines operating on diesel fuel mixed with DMC. The experimental results have shown that particulate matter (PM) emissions can be reduced using the DMC oxygenated compound. The combustion analysis indicated that the ignition delay of the engine fuelled with DMC-diesel blended fuel is longer, but combustion duration is much shorter, and the thermal efficiency is increased compared with that of a base diesel engine. Further, if injection is also delayed, NOx emissions can be reduced while PM emissions are still reduced significantly. The experimental study found that diesel engines fuelled with DMC additive had improved combustion and emission performances.


2019 ◽  
Vol 1 (2) ◽  
pp. 35-44
Author(s):  
Ramesh C ◽  
Murugesan A ◽  
Vijayakumar C

Diesel engines are widely used for their low fuel consumption and better efficiency. Fuel conservation, efficiency and emission control are always the investigation points in the view of researchers in developing energy system. India to search for a suitable environmental friendly alternative to diesel fuel. The regulated emissions from diesel engines are carbon monoxide (CO), Hydrocarbons (HC), NOx and Particulate matter. It creates cancer, lungs problems, headaches and physical and mental problems of human. This paper focuses on the substitution of fossil fuel diesel with renewable alternatives fuel such as Biodiesel. Biodiesel is much clear than fossil diesel fuel and it can be used in any diesel engine without major modification. The experiment was conducted in a single-cylinder four-stroke water-cooled 3.4 kW direct injection compression ignition engine fueled with non-edible Pungamia oil biodiesel blends. The experimental results proved that up to 40% of Pungamia oil biodiesel blends give better results compared to diesel fuel. The AVL 444 di-gas analyzer and AVL 437 smoke meter are used to measure the exhaust emissions from the engine. The observation of results, non-edible Pongamia biodiesel blended fuels brake thermal efficiency (3.59%) is improved and harmful emissions like CO, unburned HC, CO2, Particulate matter, soot particles, NOx and smoke levels are 29.67%, 26.65%, 33.47%, 39.57%, +/- 3.5 and 41.03% is decreased respectively compared to the diesel fuel. This is due to biodiesel contains the inbuilt oxygen content, ignition quality, carbon burns fully, less sulphur content, no aromatics, complete CO2 cycle.


Author(s):  
Sergey Yu. Zhachkin ◽  
Nikita A. Pen’kov ◽  
Marina N. Krasnova ◽  
Aleksandr A. Plakhotin ◽  
Roman N. Zadorozhnyy

Electroplating chromium-containing coatings on the surface of the parts to be restored is an effective way to increase their wear resistance and corrosion protection. The price of equipment used in various industries and having hydraulic or pneumatic actuators of the working parts, as well as the cost of maintaining it in working condition during operation, are largely determined by the ability to get the thickness in the process of restoring the coating with the specifi ed project and preserving the confi guration of the original part without the use of mechanical processing of galvanic coating. (Research purpose) The research purpose is to determine the features of changes in the performance characteristics of the deposited coating depending on changes in the parameters of electrolysis and mechanical action on the restored part. (Materials and methods) Authors carried out tests on experimental sleeves made of 30 HGSA steel on TU 14-1-950-74, to determine the performance parameters of machining parts by galvanocontact deposition. The research on algorithms calculated using the theory of experiment planning has been performed. (Results and discussion) The article presents the dependence of some operational parameters (microhardness of the coating and residual stresses in it) on various control factors (current density, temperature, tool pressure). The complete factorial experiment was of 24 plan. The regression equations of individual parameters characterizing the quality of the created coatings were determined using the experiment planning theory. It was noted that one of the non-stationary methods of electrolysis was used to obtain this type of precipitation; it is the coating with simultaneous 95 mechanical treatment in a galvanic bath during deposition. It was revealed that these coatings have compressive residual stresses, increased adhesion to the base, minimal thickness difference. (Conclusions) The studies provide an opportunity to predict the quality of the resulting coatings in the restoration of vehicle parts.


1988 ◽  
Vol 110 (3) ◽  
pp. 437-443 ◽  
Author(s):  
C. M. Urban ◽  
H. E. Mecredy ◽  
T. W. Ryan ◽  
M. N. Ingalls ◽  
B. T. Jett

The U.S. Department of Energy, Morgantown Energy Technology Center has assumed a leadership role in the development of coal-burning diesel engines. The motivation for this work is obvious when one considers the magnitude of the domestic reserves of coal and the widespread use of diesel engines. The work reported in this paper represents the preliminary engine experiments leading to the development of a coal-burning, medium-speed diesel engine. The basis of this development effort is a two-stroke, 900 rpm, 216-mm (8.5-in.) bore engine manufactured by Electro-Motive Division of General Motors Corporation. The engine, in a minimally modified form, has been operated for several hours on a slurry of 50 percent (by mass) coal in water. Engine operation was achieved in this configuration using a pilot injection of diesel fuel to ignite the main charge of slurry. A standard unit injector, slightly modified by increasing diametric clearances in the injector pump and nozzle tip, was used to inject the slurry. Under the engine operating conditions evaluated, the combustion efficiency of the coal and the NOx emissions were lower than, and the particulate emissions were higher than, corresponding diesel fuel results. These initial results, achieved without optimizing the system on the coal slurry, demonstrate the potential for utilizing coal slurry fuels.


2014 ◽  
Vol 492 ◽  
pp. 335-340
Author(s):  
Jian Wu ◽  
Li Li Zhu ◽  
Zhan Cheng Wang ◽  
Bin Xu ◽  
Hong Ming Wang

Experiment of fuel combustion and emission characteristics was carried on a turbocharged intercooled electronically controlled high pressure common rail diesel engine with n-butanol/diesel blends, then the results of experiment were compared and analyzed. The results show that with the adding of n-butanol, the maximum combustion pressure gradually increases and the maximum heat release rate gradually reduces; compared with diesel, CO emissions of the blends are slightly lower and decrease with the increasing load; HC emissions of the mixture fuel are higher and decrease first then increase with the increasing load; at 2000rpm, NOX emissions of the blends are a little lower than the pure diesel in small loads but higher in other loads, and increase with the adding of the load.


Sign in / Sign up

Export Citation Format

Share Document