scholarly journals The organic waste fractions ratio optimization in the anaerobic co-digestion process for the increase of biogas yield

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1525-1534
Author(s):  
Ana Momcilovic ◽  
Gordana Stefanovic ◽  
Predrag Rajkovic ◽  
Nenad Stojkovic ◽  
Biljana Milutinovic ◽  
...  

Biogas obtained by anaerobic digestion process from various organic fractions of waste is increasingly used as a renewable energy sources for the generation of electricity and heat. The quantity of biogas produced by anaerobic digestion depends on many factors: types and characteristics of organic waste, elemental composition of waste, C/N ratio, pH value, inhibitors, retention time, content of nutrients, etc. In addition to the selection of parameters that influence the process of anaerobic digestion, biogas yield can also be influenced by choosing the optimal combination and ratio of organic fractions of waste. In this paper, an analysis of the influential parameters in the process of anaerobic digestion was per-formed on biogas yields and an overview of the essential characteristics of waste (elementary composition, C/N ratio, lignin content, etc.) for different fractions of organic waste (organic municipal waste, various types of waste of animal origin, as well as agricultural waste). In order to choose the optimal mixing ratio of different fractions of organic waste for maximum biogas yield, a mathematical model has been developed using the multi-criteria optimization method. The boundary conditions set for the multi-criteria optimization was the C/N ratio in the range of 20 to 30 and the minimum content of the lignin in the substrate. The application of the developed model was carried out on the case study of the city of Nis, and the optimal mix of different types of organic waste was determined, as well as the optimal amount of each waste fraction and biogas yield.

2019 ◽  
Vol 4 (6) ◽  
Author(s):  
KO Ansah Amano ◽  
E Appiah-Danquah ◽  
E Adom ◽  
AG Ntiri-Asiedu ◽  
ES Amoamah ◽  
...  

Management of waste is a key concern in several communities in Ghana. The exponential growth in waste generation imposes serious threats such as environmental pollution, health risk and scarcity of dumping site to our society. A large variety of organic rich materials inherent in this waste have high potential to be treated by the use of anaerobic digestion. In this study, eight (8) Laboratory scale biodigesters were used for the anaerobic co-digestion of household and market waste with cow dung as inoculum, controlled at a pH range of 6.53-7.04 and at a mesophilic temperature of 35±2˚C. The study was also conducted in batch mode at a hydraulic retention time of 21 days. The anaerobic co-digestion process was developed and optimized at varying feedstock to inoculum ratio to determine the potential biogas yield from each proportion. The results obtained indicate sample S8, containing market waste and inoculum in the ratio of 6:1 produced the optimum concentration of methane (51% v/v biogas) while the least was recorded by sample S2 primarily made up of market waste. ANOVA results show that the concentration of methane produced from the substrate is significantly affected by the hydraulic retention time and pH value of the anaerobic digestion process.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3768 ◽  
Author(s):  
Przemysław Seruga ◽  
Małgorzata Krzywonos ◽  
Anna Seruga ◽  
Łukasz Niedźwiecki ◽  
Halina Pawlak-Kruczek ◽  
...  

The replacement of fossil fuel with renewable energy sources seems as though it will be crucial in the future. On the other hand, waste generation increases year by year. Thus, waste-to-energy technologies fit in with the actual trends, such as the circular economy. The crucial type of generated waste is municipal solid waste, which is in the research area. Regarding the organic fraction of municipal solid waste (OFMSW), anaerobic digestion (AD) allows the recovery of biogas and energy. Furthermore, if it is supported by source segregation, it should allow the recovery of material as fertilizer. The AD process performance (biogas yield and stability) comparison of source-segregated OFMSW (ss-OFMWS) and mechanically sorted OFMSW (ms-OFMSW) as feedstocks was performed in full-scale conditions. The daily biogas volume and methane content were measured to assess AD efficiency. To verify the process stability, the volatile fatty acid (VFA) content, pH value, acidity, alkalinity, and dry matter were determined. The obtained biogas yield per ton was slightly higher in the case of ss-OFMSW (111.1 m3/ton), compared to ms-OFMSW (105.3 m3/ton), together with a higher methane concentration: 58–60% and 51–53%, respectively, and followed by a higher electricity production capacity of almost 700 MWh for ss-OFMSW digestion. The obtained VFA concentrations, at levels around 1.1 g/kg, pH values (slightly above 8.0), acidity, and alkalinity indicate the possibilities of the digester feeding and no-risk exploitation of either as feedstock.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2021 ◽  
Vol 3 (144) ◽  
pp. 22-31
Author(s):  
Viktor S. Grigor’yev ◽  
◽  
Il’ya V. Romanov

The ability of gas hydrates to concentrate gas into a solid chelate structure and the properties of self-preservation of gas hydrates at negative temperatures allows us to consider the possibility of developing a method for the utilization of biogas, environmentally safe storage and transportation of biomethane. (Research purpose) The research purpose is in substantiation the technological possibilities of obtaining synthetic mixed gas hydrates of biogas components, their storage and transportation based on the analysis of the existing regularities of the formation of gas hydrates in time, temperature and external pressure. (Materials and methods) The article presents the accumulated results of studies of the process of obtaining artificial hydrates of natural gas and methane- containing gas mixtures at various initial static pressures and temperatures. The object of research to substantiate the parameters of artificial creation of gas hydrates is biogas obtained during anaerobic thermophilic fermentation of organic waste at an existing experimental biogas plant. Mixed feed SK-8 with a humidity of 90-92 percent was used as an organic substrate of constant composition. The composition of biogas was studied using the Optima-7 Biogas gas analyzer. (Results and discussion) The article presents a process model and a technical appearance of an installation for producing gas motor fuel from the biogas of anaerobic digestion of organic waste of the agro-industrial complex. The hydrate formation time depends on the increase in the interfacial surface and the movement of gas bubbles relative to the liquid, which can be regulated by acting on the hydrate formation zone (shock wave, electromagnetic, mechanical, chemical, temperature). (Conclusions) The research results can be used in modeling processes in two-phase media during the formation of gas hydrates and the creation of installations for their production.


2018 ◽  
Vol 7 (3.36) ◽  
pp. 170
Author(s):  
Umar M. Ibrahim ◽  
Saeed I. Ahmed ◽  
Babagana Gutti ◽  
Idris M. Muhammad ◽  
Usman D. Hamza ◽  
...  

The combination of Irish potato waste (IPW) and poultry waste (PW) can form a synergy resulting into an effective substrate for a better biogas production due to some materials they contain. In this work, optimization and kinetic study of biogas production from anaerobic digestion of IPW and PW was investigated. Response surface methodology (RSM) was applied to optimize conditions such as initial pH, solids concentrations and waste ratios. The anaerobic digestion of the two wastes was carried out in the mesophilic condition and Box-Behnken design (BBD) was used to develop and analyze a predictive model which describes the biogas yield. The results revealed that there is a good fit between the experimental and the predicted biogas yield as revealed by the coefficient of determination (R2) value of 97.93%. Optimization using quadratic RSM predicts biogas yield of 19.75% at the optimal conditions of initial pH value 7.28, solids concentration (w/v) 9.85% and waste ratio (IPW:PW) 45:55%. The reaction was observed to have followed a first order kinetics having R2 and relative squared error (RSE) values of 90.61 and 9.63% respectively. Kinetic parameters, such as rate constant and half-life of the biogas yield were evaluated at optimum conditions to be 0.0392 day-1 and 17.68 days respectively. The optimum conditions and kinetic parameters generated from this research can be used to design real bio-digesters, monitor substrate concentrations, simulate biochemical processes and predict performance of bio-digesters using IPW and PW as substrate.  


Author(s):  
Fabio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. 250-256
Author(s):  
M. Haruna ◽  
O.R. Momoh ◽  
S. Bilal

Biomass is being looked upon as one of the promising renewable energy sources for the future, with growing interest in microalgae conversion into biogas through anaerobic digestion. Recently, the ability of microalgae to treat waste water has doubled its potentials material today. However, in spite of the progress made in that regards, there are still challenges of algae conversion to biofuel, due to the presence of complex cell wall in some algae. Cell wall inhibits bacteria growth during degradation. In this research work 10 grams of Microcoleous vaginatus was treated in an oven at varying temperatures of 70, 75 and 80 oC for an hour, out of which 4 g was measured into 250 ml serum bottle for digestion at mesophilic temperature of 37 oC. Based on the results of proximate analysis, 69%increase in carbohydrate was attained with 72.7 – 148% reduction in moisture content. The biogas yield of untreated sample was 4.36 mLg−1 VS, while, pretreated samples at 70, 75 and 80 ℃ produced 8.39, 9.07 and 9.38 mLg−1VS (volatile solid) of biogas. This  corresponds to 92, 108 and 115% higher than that of untreated samples. However, thermal treatment of M. vaginatus prior to digestion show positive effect on carbohydrate extraction and enhanced biogas and methane yield as well. Therefore, this makes the substrate a good feedstock for biogas production. Keywords: Biomass, pretreatment, thermal, anaerobic digestion, degradation, Microcoleous vaginatus.


2021 ◽  
Author(s):  
Samer Dahahda

The rapid depletion of natural resources and the environmental concerns associated with the use of fossil fuels as the main source of global energy is leading to an increased interest in alternative and renewable energy sources. Lignocellulosic biomass is the most abundant source of organic materials that can be utilized as an energy source. Anaerobic digestion has been proven to be an effective technology for converting organic material into energy products such as biogas. However, the nature of lignocellulosic materials hinders the ability of microorganisms in an anaerobic digestion process to degrade and convert organic material to biogas. Therefore, a pretreatment step is necessary to improve the degradability of lignocellulosic materials and achieve higher biogas yield. Several pretreatment methods have been studied over the past few years including physical, thermal, chemical and biological pretreatment. This paper reviews biological and thermal pretreatment as two main promising methods used to improve biogas production from lignocelluloses. A greater focus is given on enzymatic pretreatment which is one of the promising yet under-researched biological pretreatment method. The paper addresses challenges in degrading lignocellulosic materials and the current status of research to improve biogas yield from lignocelluloses through biological and thermal pretreatment.


2019 ◽  
Vol 4 (1) ◽  
pp. 404-413
Author(s):  
Singh Buta ◽  
Zoltán Szamosi ◽  
Zoltán Siménfalvi

Operational parameters can be easily controlled at lab scale experiments for an anaerobic digestion process. Our aim is to design a lab-scale digester equipped with an impeller to investigate how the geometry of impeller and different mixing modes effect the biogas yield of digester. Further, the methods of measuring the gas volume, gas composition, mixing intensity, torque, temperature are discussed in this article. The assembling of 4 liters digester is described which can be operated at various operating parameters which control the anaerobic digestion process. Mixing is very important to enhance efficiency of an anaerobic digester. To attain mixing Maxblend impeller is used in this lab-scale digester due to its better performance for mixing and power consumption. Various design consideration has been described.


2020 ◽  
Vol 18 (4) ◽  
pp. 561-564
Author(s):  
Anja Antanasković ◽  
Maja Bulatović ◽  
Marica Rakin ◽  
Zorica Lopičić ◽  
Tatjana Šoštarić ◽  
...  

Anaerobic digestion is a natural process of organic material degradation by different kinds of microorganisms in the absence of oxygen. This process is used for industrial purpose to manage waste streams or to produce biogas. It gives a major contribution in reduction of harmful effects of organic waste disposal to the environment. The aim of agricultural waste pretreatment in biogas production is to decrease the retention time, improve utilization of raw material and improve the overall productivity and energy efficiency of the production process. In this paper the effects of combined chemical and mechanical pretreatment of corn straw biomass on biogas yield during anaerobic digestion of the feedstock were analyzed. The impact of pretreatment and process parameters in biogas production was analyzed by process simulation using the software SuperPro Designer. Using this tool, it was shown that alkaline pretreatment leads to an decrease of degradation time along with an increase in biogas yield.


Sign in / Sign up

Export Citation Format

Share Document