scholarly journals Experimental and numerical investigation of thermal improvement of window frames

2020 ◽  
pp. 189-189
Author(s):  
Milan Gojak ◽  
Aleksandar Kijanovic ◽  
Nedzad Rudonja ◽  
Ruzica Todorovic

In this article are presented experimental and numerical determinations of thermal transmittance performed on three different types of window frames (vinyl, aluminium and wooden) within the same insulated glass unit. Good agreement between experimental and numerical results was attained. Using the numerical models, thermal improvement techniques of the frames and their influence on thermal transmittance of frames were studied. The first thermal improvement technique was using the insulation materials inserted inside large air cavities. By filling the cavity of vinyl frame with the polyurethane foam, thermal transmittance of vinyl frame was lowered by 10%. The second technique was based on repeating the procedure with materials installed inside frames with the materials that have lower thermal conductivity. This technique can be applied on thermal breaks and on steel profiles inside cavities. The result of this thermal improvement (attained by replacing thermal break material with material that has lower thermal conductivity) was certain reduction of the thermal transmittance of frames, by 9%. Using stainless steel instead of the oxidized steel was reduction of the thermal transmittance of vinyl frame by 3%. For the case of wooden frames was analysed the influence of shifting glazing unit deeper into profile upon the thermal transmittance of the frame. Installing the glass unit by 5 mm deeper into the wooden frame reduced glass thermal transmittance by 5%.

Author(s):  
Bowen Sa ◽  
V.A. Markov ◽  
Ying Liu ◽  
V.G. Kamaltdinov ◽  
Wenpei Qiao

The fuel economy and exhaust emissions of diesel engines can be improved by adding carbon nanotubes to petroleum diesel fuel. Carbon nanotubes, used as a promising nanoscale additive for diesel fuel, have high thermal conductivity and a large surface area to volume ratio. The thermophysical properties of these fuels, which depend on the composition of the mixtures, are analyzed in this study. Findings of research show that carbon nanotubes added to diesel fuel have little effect on its dynamic viscosity and thermal conductivity. By means of numerical models, we simulated the process of atomization and evaporation of diesel fuel with the different carbon nanotubes content in a constant volume combustion chamber. The accuracy of the calculations is confirmed by the good agreement between the calculated and experimental data. Simulation of mixture atomization showed that the jet length linearly depends on the carbon nanotubes content in diesel fuel. The more carbon nanotubes are in the mixture, the smaller the droplet Sauter mean diameter and the angle of the jet cone opening are. The presence of carbon nanotubes in diesel fuel insignificantly affects the fuel vapor content in it.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
R. Lo Frano ◽  
G. Forasassi

The strength of thin shells, under external pressure, is highly dependent by the nature of imperfection. This paper investigates buckling behaviour of imperfect thin cylindrical shells with analytical, numerical, and experimental methods in conditions for which, at present, a complete theoretical analysis was not found in literature. In general, collapse is initiated by yielding, but interaction with geometrical instabilities is meaningful, in that imperfections reduce the load bearing capacity by an amount of engineering significance also when thickness is considerable. The aim of this study was to conduct experiments that are representative of buckling, in the context of NPP applications as, for instance, the IRIS (international reactor innovative and secure) and LWR steam generator (SG) tubes. At Pisa University, a research activity is being carried out on the buckling of thin walled metal specimen, with a test equipment (and the necessary data acquisition facility) as well as numerical models were set up by means FEM code. The experiments were conducted on A-316 test specimens, tubes with and without longitudinal welding. The numerical and experimental results comparison highlighted the influence of different types of imperfections on the buckling loads with a good agreement between the finite-element predictions and the experimental data.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


1981 ◽  
Author(s):  
V Sachs ◽  
R Dörner ◽  
E Szirmai

Anti human plasminogen sera of the rabbit precipitate human plasma in the agar gel diffusion test by means of intra-basin absorption with plasminogenfree human plasma with three different types: type I is represented by one strong precipitation line, type II by two lines, a big one and a small one, and type III by three slight but distinct lines. The following frequencies of the different types have been observed in a sample of 516 human plasmas: type I 65%, type II 33% and type III 2%. Suppose the types are phenotypical groups of a diallelic system where the types I and III represent the homozygous genotypes and the type II the heterozygous the estimated gene frequencies are in good agreement with the expected values. There is also a good agreement of the distribution of plasminogen groups determined by electrofocussing from RAUM et al. and HOBART. The plasminogen groups possibly may have also a biological meaning because the plasmas of type III always have a lesser fibrinolytic activity than the plasmas of the other types.


2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


2011 ◽  
Vol 31 (8-9) ◽  
Author(s):  
Walter Michaeli ◽  
Christoph Kremer

Abstract This paper describes an opportunity to compute the surface waviness of compression moulded sheet moulding compound (SMC) parts by simulating residual stresses. First, different types of surface defects occurring on SMC parts are discussed. A method for calculating the surface waviness of the compression moulded part is presented, which combines the simulation of the production process and the structural computation. Modelling of the curing reaction and the development of mechanical properties are discussed and implemented. The potential of the computation method is shown for an automotive fender made of SMC. The results state that the curing reaction of SMC can be well described using the approach of Ng and Manas-Zloczower. The position of the measured waviness on the examined fender is in good agreement with the calculated stress distribution.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yinli Xiao ◽  
Zupeng Wang ◽  
Zhengxin Lai ◽  
Wenyan Song

The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document