scholarly journals Influenza - flu

2010 ◽  
Vol 64 (1-2) ◽  
pp. 109-125
Author(s):  
Miroslav Valcic ◽  
Sonja Radojicic

In epidemiology or in epizootiology, there are some infectious diseases that have potential for significant reduction of the susceptible species population. Over the past few decades, epidemiologists were concentrated on diseases that were 'modern' and made front-page news in tabloids. One should recall diseases like bovine spongiform encephalopathy, SARS and AIDS syndromes. However, we should always be aware of the most dangerous diseases such as our old friend, influenza, or simply, flu. In the past decade, we heard about 'bird' or 'swine' influenza. It is the same disease for different animal species as well as for man. Influenza owes its characteristics to specific virus biology as well as to the epidemiology-epizootiology characteristics of the susceptible species. Antigenic changes that took place thanks to reassortment mechanisms of the viral gene segments cause the onset of the new antigenic combinations of the hemaglutinin and neuraminidase molecules. As a result, new H and/or N antigenic formulas appear for the first time in totally susceptible animal and human populations. That means that in such circumstances, no person in the world is immune to the virus. In that case, such a virus can cause a pandemic with disastrous consequences since influenza is a disease with significant mortality, especially in some segments of the human (as well as animal) population. Birds and swine are virus reservoirs, but these species are at the same time live test tubes in which the virus resides, changes and adapts itself not only to the original species but to other species as well. That means that there is no 'bird' or 'swine' flu. Influenza is an infection of several important animal species as well as man that have potential not only for the reduction of the population size but, in case of the human population, for influencing social and economic life. .

1979 ◽  
Vol 44 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Bruce D. Smith

To determine the pattern of selective utilization of animal species by prehistoric human populations, it is first necessary to quantify the relative importance of species of animals in the diet of prehistoric human groups through analysis of archaeologically recovered faunal samples. These values are then compared with estimates of the relative availability of different species of animals in the environment. Such estimates of the relative availability of animal species in prehistoric habitat situations, usually quantified in terms of biomass, are obtained by projecting data from modern analog situations into the past. When attempting to reconstruct prehistoric biotic communities in this manner, it is important to be aware of a number of possible sources of bias and to evaluate and apply modern wildlife data according to a set of interrelated principles. Sources of bias and criteria for selecting modern wildlife analog data are discussed.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Michael T. Osterholm ◽  
Cory J. Anderson ◽  
Mark D. Zabel ◽  
Joni M. Scheftel ◽  
Kristine A. Moore ◽  
...  

ABSTRACT Chronic wasting disease (CWD) is a prion-related transmissible spongiform encephalopathy of cervids, including deer, elk, reindeer, sika deer, and moose. CWD has been confirmed in at least 26 U.S. states, three Canadian provinces, South Korea, Finland, Norway, and Sweden, with a notable increase in the past 5 years. The continued geographic spread of this disease increases the frequency of exposure to CWD prions among cervids, humans, and other animal species. Since CWD is now an established wildlife disease in North America, proactive steps, where possible, should be taken to limit transmission of CWD among animals and reduce the potential for human exposure.


Author(s):  
Maurizio Ferri ◽  
Shin Jie Yong

The COVID-19 pandemic represents one of the greatest public health crises in recent history that caused unprecedented and massive disruptions of social and economic life globally. It is widely acknowledged that bats are the animal reservoir of coronavirus 2 of the severe acute respiratory syndrome (SARS-CoV-2), the causative agent of the human coronavirus disease 2019 (COVID-19). It has also long been known that coronaviruses circulate among different animal species. However, much remain to be understood of the epidemiology, the presumed existence of intermediate animal species and current and potential animal routes of SARS-Cov-2 transmission to humans. The recent observational and experimental studies also highlight the role of domestic and farmed animals in the epidemiology of COVID-19. This raises concerns of the potential spread of infection among susceptible animal species, with the risk of evolving into panzootic, and the likely occurrence of anthropozoonoses or reverse zoonosis (from humans to animals). As for other wildlife emerging pathogens, the animal-human spillover of SARS-CoV-2 is linked to a closer interface with humans, with the resulting risk of a pandemic. This knowledge has meaningful implications for the design of effective wildlife animal surveillance (epidemic intelligence) targeting CoVs in animal reservoirs, and requires the mobilization of different lines of expertise, notably veterinary epidemiologists and virologists, within a multi-disciplinary approach according to the One-Health principles.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2323
Author(s):  
Lloyd A. Courtenay ◽  
Darío Herranz-Rodrigo ◽  
José Yravedra ◽  
José Mª Vázquez-Rodríguez ◽  
Rosa Huguet ◽  
...  

Human populations have been known to develop complex relationships with large carnivore species throughout time, with evidence of both competition and collaboration to obtain resources throughout the Pleistocene. From this perspective, many archaeological and palaeontological sites present evidence of carnivore modifications to bone. In response to this, specialists in the study of microscopic bone surface modifications have resorted to the use of 3D modeling and data science techniques for the inspection of these elements, reaching novel limits for the discerning of carnivore agencies. The present research analyzes the tooth mark variability produced by multiple Iberian wolf individuals, with the aim of studying how captivity may affect the nature of tooth marks left on bone. In addition to this, four different populations of both wild and captive Iberian wolves are also compared for a more in-depth comparison of intra-species variability. This research statistically shows that large canid tooth pits are the least affected by captivity, while tooth scores appear more superficial when produced by captive wolves. The superficial nature of captive wolf tooth scores is additionally seen to correlate with other metric features, thus influencing overall mark morphologies. In light of this, the present study opens a new dialogue on the reasons behind this, advising caution when using tooth scores for carnivore identification and contemplating how elements such as stress may be affecting the wolves under study.


Radiocarbon ◽  
2020 ◽  
pp. 1-8
Author(s):  
Alyssa M Tate ◽  
Brittany Hundman ◽  
Jonathan Heile

ABSTRACT Leather has been produced by a variety of methods throughout human history, providing researchers unique insight into multiple facets of social and economic life in the past. Archaeologically recovered leather is often fragile and poorly preserved, leading to the use of various conservation and restoration efforts that may include the application of fats, oils, or waxes. Such additives introduce exogenous carbon to the leather, contaminating the specimen. These contaminants, in addition to those accumulated during interment, must be removed through chemical pretreatment prior to radiocarbon (14C) dating to ensure accurate dating. DirectAMS utilizes organic solvents, acid-base-acid (ABA) and gelatinization for all leather samples. Collagen yield from leather samples is variable due to the method of production and the quality of preservation. However, evaluating the acid-soluble collagen fraction, when available, provides the most accurate 14C dates for leather samples. In instances where gelatinization does not yield sufficient material, the resulting acid-insoluble fraction may be dated. Here we examine the effectiveness of the combined organic solvent and ABA pretreatment with gelatinization for leather samples, as well as the suitability of the acid-insoluble fraction for 14C dating.


Koedoe ◽  
1989 ◽  
Vol 32 (1) ◽  
Author(s):  
Ina Plug

Faunal remains obtained from archaeological sites in the Kruger National Park, provide valuable information on the distributions of animal species in the past. The relative abundances of some species are compared with animal population statistics of the present. The study of the faunal samples, which date from nearly 7 000 years before present until the nineteenth century, also provides insight into climatic conditions during prehistoric times.


2017 ◽  
Vol 284 (1861) ◽  
pp. 20170706 ◽  
Author(s):  
Valentin Thouzeau ◽  
Philippe Mennecier ◽  
Paul Verdu ◽  
Frédéric Austerlitz

Linguistic and genetic data have been widely compared, but the histories underlying these descriptions are rarely jointly inferred. We developed a unique methodological framework for analysing jointly language diversity and genetic polymorphism data, to infer the past history of separation, exchange and admixture events among human populations. This method relies on approximate Bayesian computations that enable the identification of the most probable historical scenario underlying each type of data, and to infer the parameters of these scenarios. For this purpose, we developed a new computer program PopLingSim that simulates the evolution of linguistic diversity, which we coupled with an existing coalescent-based genetic simulation program, to simulate both linguistic and genetic data within a set of populations. Applying this new program to a wide linguistic and genetic dataset of Central Asia, we found several differences between linguistic and genetic histories. In particular, we showed how genetic and linguistic exchanges differed in the past in this area: some cultural exchanges were maintained without genetic exchanges. The methodological framework and the linguistic simulation tool developed here can be used in future work for disentangling complex linguistic and genetic evolutions underlying human biological and cultural histories.


2021 ◽  
Author(s):  
Moisès Coll Macià ◽  
Laurits Skov ◽  
Benjamin Marco Peter ◽  
Mikkel Heide Schierup

AbstractAfter the main out-of-Africa event, humans interbred with Neanderthals leaving 1-2% of Neanderthal DNA scattered in small fragments in all non-African genomes today1,2. Here we investigate the size distribution of these fragments in non-African genomes3. We find consistent differences in fragment length distributions across Eurasia with 11% longer fragments in East Asians than in West Eurasians. By comparing extant populations and ancient samples, we show that these differences are due to a different rate of decay in length by recombination since the Neanderthal admixture. In line with this, we observe a strong correlation between the average fragment length and the accumulation of derived mutations, similar to what is expected by changing the ages at reproduction as estimated from trio studies4. Altogether, our results suggest consistent differences in the generation interval across Eurasia, by up to 20% (e.g. 25 versus 30 years), over the past 40,000 years. We use sex-specific accumulations of derived alleles to infer how these changes in generation intervals between geographical regions could have been mainly driven by shifts in either male or female age of reproduction, or both. We also find that previously reported variation in the mutational spectrum5 may be largely explained by changes to the generation interval and not by changes to the underlying mutational mechanism. We conclude that Neanderthal fragment lengths provide unique insight into differences of a key demographic parameter among human populations over the recent history.


2021 ◽  
Vol 118 (28) ◽  
pp. e2024150118
Author(s):  
Clarence Lehman ◽  
Shelby Loberg ◽  
Michael Wilson ◽  
Eville Gorham

Human populations have grown to such an extent that our species has become a dominant force on the planet, prompting geologists to begin applying the term Anthropocene to recognize the present moment. Many approaches seek to explain the past and future of human population growth, in the form of narratives and models. Some of the most influential models have parameters that cannot be precisely known but are estimated by expert opinion. Here we apply a unified model of ecology to provide a macroscale summary of the net effects of many microscale processes, using a minimal set of parameters that can be known. Our models match estimates of historic and prehistoric global human population numbers and provide predictions that correspond to some of the more complicated current models. In addition to fitting the data well they reveal that, amidst enormous complexity in our human and prehuman past, three key ecological discontinuities have occurred in turn: 1) becoming dominant competitors of large predators rather than their prey, 2) becoming mutualists with food species rather than acting as predators upon them, and 3) changing from a regime of uncontrolled population growth to one of controlled fertility instead. All three processes have been interlinked with cultural evolution and all three ushered in developments of the Anthropocene. Understanding the trajectories that have delivered us to this stage can help guide prudent paths into the future.


Sign in / Sign up

Export Citation Format

Share Document