Tumor Immunology

2017 ◽  
Author(s):  
Rachel L Maus ◽  
Haidong Dong ◽  
Svetomir N Markovic

The immune system has effectively evolved to protect the host against foreign invaders, including bacterial, viral, and parasitic infiltrates. Less clear has been the interaction and the protective effects the immune system mounts against its own infiltrates: cancer cells. Here we consider the dynamic interactions between cancer and the associated host immune response by highlighting the key players involved in engaging an effective antitumor immune response and the mechanisms responsible for enabling the evolution of cancer cells to escape immunosurveillance. By developing an appreciation for the dual function of the immune system in the setting of cancer biology, we also consider the clever strategies that have been employed to uncover tumor targets, including tumor-associated antigens and the mechanisms for enhancing or reengaging the immune system to mount an effective antitumor immune response. Finally, we incorporate these key findings into the context of immunotherapy, a rapidly evolving field aimed at combating tumor escape by enabling the host immune system to regain its tumor-eradicating functions. This review contains 5 figures, 9 tables and 60 references Key words: adoptive T cell therapy, checkpoint inhibitors, cytokine therapy, immunotherapy, neutralizing antibodies, tumor immunity, tumor microenvironment, vaccines 


2018 ◽  
Author(s):  
Rachel L Maus ◽  
Haidong Dong ◽  
Svetomir N Markovic

The immune system has effectively evolved to protect the host against foreign invaders, including bacterial, viral, and parasitic infiltrates. Less clear has been the interaction and the protective effects the immune system mounts against its own infiltrates: cancer cells. Here we consider the dynamic interactions between cancer and the associated host immune response by highlighting the key players involved in engaging an effective antitumor immune response and the mechanisms responsible for enabling the evolution of cancer cells to escape immunosurveillance. By developing an appreciation for the dual function of the immune system in the setting of cancer biology, we also consider the clever strategies that have been employed to uncover tumor targets, including tumor-associated antigens and the mechanisms for enhancing or reengaging the immune system to mount an effective antitumor immune response. Finally, we incorporate these key findings into the context of immunotherapy, a rapidly evolving field aimed at combating tumor escape by enabling the host immune system to regain its tumor-eradicating functions. This review contains 5 figures, 9 tables and 60 references Key words: adoptive T cell therapy, checkpoint inhibitors, cytokine therapy, immunotherapy, neutralizing antibodies, tumor immunity, tumor microenvironment, vaccines 



2006 ◽  
Vol 203 (12) ◽  
pp. 2691-2702 ◽  
Author(s):  
Paolo Serafini ◽  
Kristen Meckel ◽  
Michael Kelso ◽  
Kimberly Noonan ◽  
Joseph Califano ◽  
...  

Phosphodiesterase-5 (PDE5) inhibitors (sildenafil, tadalafil, and vardenafil) are agents currently in clinical use for nonmalignant conditions. We report the use of PDE5 inhibitors as modulators of the antitumor immune response. In several mouse tumor models, PDE5 inhibition reverses tumor-induced immunosuppressive mechanisms and enables a measurable antitumor immune response to be generated that substantially delays tumor progression. In particular, sildenafil, down-regulates arginase 1 and nitric oxide synthase–2 expression, thereby reducing the suppressive machinery of CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) recruited by growing tumors. By removing these tumor escape mechanisms, sildenafil enhances intratumoral T cell infiltration and activation, reduces tumor outgrowth, and improves the antitumor efficacy of adoptive T cell therapy. Sildenafil also restores in vitro T cell proliferation of peripheral blood mononuclear cells from multiple myeloma and head and neck cancer patients. In light of the recent data that enzymes mediating MDSC-dependent immunosuppression in mice are active also in humans, these findings demonstrate a potentially novel use of PDE5 inhibitors as adjuncts to tumor-specific immune therapy.



Pathobiology ◽  
2021 ◽  
pp. 1-17
Author(s):  
Ana Margarida Barbosa ◽  
Alexandra Gomes-Gonçalves ◽  
António G. Castro ◽  
Egídio Torrado

The immune system plays a critical role in preventing cancer development and progression. However, the complex network of cells and soluble factor that form the tumor microenvironment (TME) can dictate the differentiation of tumor-infiltrating leukocytes and shift the antitumor immune response into promoting tumor growth. With the advent of cancer immunotherapy, there has been a reinvigorated interest in defining how the TME shapes the antitumor immune response. This interest brought to light the microbiome as a novel player in shaping cancer immunosurveillance. Indeed, accumulating evidence now suggests that the microbiome may confer susceptibility or resistance to certain cancers and may influence response to therapeutics, particularly immune checkpoint inhibitors. As we move forward into the age of precision medicine, it is vital that we define the factors that influence the interplay between the triad immune system-microbiota-cancer. This knowledge will contribute to improve the therapeutic response to current approaches and will unravel novel targets for immunotherapy.



2021 ◽  
Author(s):  
Mathieu Rouanne ◽  
Julien Adam ◽  
Camélia Radulescu ◽  
Séverine Mouraud ◽  
Delphine Bredel ◽  
...  


2020 ◽  
Vol 10 (2) ◽  
pp. 305-314
Author(s):  
I. N. Zhilinskaya

A comparative analysis on search for amino acid sequences in viral proteins causing respiratory infections (or respiratory infections syndrome) homologous to amino acid sequences from some human immune proteins was performed. The following viruses were used for comparative computer analysis: coronavirus (SARS-CoV), serotype C subgroup adenovirus C (adenoid 71 strain), measles virus (ICHINOSE-BA strain), rubella (Therien strain) and respiratory syncytial (B1 strain) virus. The search for homologous sequences in viral and human immune proteins was carried out by computer comparison of 12 amino acid fragments, which were assigned as homologous at identity in ≥ 8 positions. The data obtained showed that viral proteins contained homologous motifs in several host immune proteins involved in regulating both the inflammatory response and immune response. Mechanistically, all viruses studied were characterized by sequences homologous to host immune proteins such as complement system proteins, integrins, apoptosis inhibitory proteins, interleukins, and toll-like receptors. Such cellular proteins are actively involved in regulating host inflammatory process and immune response formation. Upon that, a set of host immune proteins, to which homologous fragments were found in viral proteins, was individual for each virus. Interestingly, the largest amount of homologous fragments (up to 20) was mainly concentrated in viral proteins with polymerase and protease activity suggesting that these proteins apart to their major role were involved in production of viral nucleic acids and might participate in regulating host immune system. Envelope, internal and non-structural viral proteins, homologous fragments were detected in much smaller quantities (from 1 to 4). In addition, two fragments homologous to various motifs of the same cellular protein were detected in some viral proteins. Thus, the data obtained further support our understanding that signs of immune system disorders in viral infections can result from multi-layered processes associated with modulation of host innate and adaptive immune system, and open up new approaches to study interaction of viruses with host immune system and identify new functions of viral proteins.



2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.



Author(s):  
Tanvir Bamra ◽  
Taj Shafi ◽  
Sushmita Das ◽  
Manjay Kumar ◽  
Manas Ranjan Dikhit ◽  
...  

Summary StatementLeishmania secretes over 151 proteins during in vitro cultivation. Cellular functions of one such novel protein: mevalonate kinase is discussed here; signifying its importance in Leishmania infection.Visceral Leishmaniasis is a persistent infection, caused by Leishmania donovani in Indian subcontinent. This persistence is partly due to phagocytosis and evasion of host immune response. The underlying mechanism involves secretory proteins of Leishmania parasite; however, related studies are meagre. We have identified a novel secretory Leishmania donovani glycoprotein, Mevalonate kinase (MVK), and shown its importance in parasite internalization and immuno-modulation. In our studies, MVK was found to be secreted maximum after 1 h temperature stress at 37°C. Its secretion was increased by 6.5-fold in phagolysosome-like condition (pH ~5.5, 37°C) than at pH ~7.4 and 25°C. Treatment with MVK modulated host immune system by inducing interleukin-10 and interleukin-4 secretion, suppressing host’s ability to kill the parasite. Peripheral blood mononuclear cell (PBMC)-derived macrophages infected with mevalonate kinase-overexpressing parasites showed an increase in intracellular parasite burden in comparison to infection with vector control parasites. Mechanism behind the increase in phagocytosis and immunosuppression was found to be phosphorylation of mitogen-activated protein (MAP) kinase pathway protein, Extracellular signal-regulated kinases-1/2, and actin scaffold protein, cortactin. Thus, we conclude that Leishmania donovani Mevalonate kinase aids in parasite engulfment and subvert the immune system by interfering with signal transduction pathways in host cells, which causes suppression of the protective response and facilitates their persistence in the host. Our work elucidates the involvement of Leishmania in the process of phagocytosis which is thought to be dependent largely on macrophages and contributes towards better understanding of host pathogen interactions.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Monica C. Gestal ◽  
Laura K. Howard ◽  
Kalyan Dewan ◽  
Hannah M. Johnson ◽  
Mariette Barbier ◽  
...  

AbstractWell-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.



2008 ◽  
Vol 26 (20) ◽  
pp. 3445-3455 ◽  
Author(s):  
John M. Kirkwood ◽  
Ahmad A. Tarhini ◽  
Monica C. Panelli ◽  
Stergios J. Moschos ◽  
Hassane M. Zarour ◽  
...  

PurposeImmunotherapy has a long history with striking but limited success in patients with melanoma. To date, interleukin-2 and interferon-alfa2b are the only approved immunotherapeutic agents for melanoma in the United States.DesignTumor evasion of host immune responses, and strategies for overcoming tumor-induced immunosuppression are reviewed. Several novel immunotherapies currently in worldwide phase III clinical testing for melanoma are discussed.ResultsThe limitations of immunotherapy for melanoma stem from tumor-induced mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, melanoma inhibits the maturation of antigen-presenting cells, preventing full T-cell activation and downregulating the effector antitumor immune response. New immunotherapies targeting critical regulatory elements of the immune system may overcome tolerance and promote a more effective antitumor immune response. These include monoclonal antibodies that block the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and toll-like receptor 9 (TLR9) agonists. Blockade of CTLA4 prevents inhibitory signals that downregulate T-cell activation. TLR9 agonists stimulate dendritic cell maturation and ultimately induce a more effective immune response. These approaches have been shown to stimulate acute immune activation with concomitant appearance of transient adverse events mediated by the immune system. The pattern and duration of immune responses associated with these new modalities differ from those associated with cytokines and cytotoxic agents. In addition, vaccines are being developed that may ultimately target melanoma either alone or in combination with these immunomodulatory therapies.ConclusionThe successes of cytokine and interferon therapy of melanoma, coupled with an array of new approaches, are generating new enthusiasm for the immunotherapy of melanoma.



Sign in / Sign up

Export Citation Format

Share Document