scholarly journals Analysis of SiO2 Thin Film on Si Substrate Formed with High Purity Ozone Beam.

Materia Japan ◽  
1998 ◽  
Vol 37 (3) ◽  
pp. 166-170
Author(s):  
Shingo Ichimura
1998 ◽  
Vol 555 ◽  
Author(s):  
H lizuka ◽  
M Murahara

AbstractThis paper describe the growth of a transparent SiO2 thin film performed by using Xe2• excimer lamp at room temperature. In this study, NF., and O2 mixture gases was employed as a reaction gas. A silicon substrate was placed in a reaction chamber, which was filled with NF3 and O2 mixture gases. The mixture gases were exposed to the Xe2• excimer lamplight, and SiF4 and NO2 gases were produced by photochemical reaction. Subsequently SiF4 adsorbed onto the Si substrate. SiO2 was formed by oxidation reaction between SiF4 and NO2. These processes occur spontaneously, and SiO2 film is grown. The refractive index of fabrication SiO2 thin film is 1.32. By annealing at 200°C, the refractive index of this filn was increased to 1.44. Further increase in the annealing temperature, resulted in a higher refractive index and lower density of fluorine atoms.


1998 ◽  
Vol 130-132 ◽  
pp. 214-220 ◽  
Author(s):  
Osamu Maida ◽  
Hideaki Yamamoto ◽  
Norio Okada ◽  
Takeshi Kanashima ◽  
Masanori Okuyama

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


1990 ◽  
Vol 7 (7) ◽  
pp. 308-311
Author(s):  
Li Chaorong ◽  
Mai Zhenhong ◽  
Cui Shufan ◽  
Zhou Junming ◽  
Yutian Wang

2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.


Sign in / Sign up

Export Citation Format

Share Document