scholarly journals DOT1L Regulates Thermogenic Adipocyte Differentiation and Function via Modulating H3K79 Methylation

2021 ◽  
Author(s):  
Lin Shuai ◽  
Bo-Han Li ◽  
Hao-Wen Jiang ◽  
Lin Yang ◽  
Jia Li ◽  
...  

Brown and beige adipocytes are characterized as thermogenic adipocytes and have great potential for treating obesity and associated metabolic diseases. Here, we identify a conserved mammalian lysine 79 of histone H3 (H3K79) methyltransferase, disruptor of telomeric silencing -1 like (DOT1L), as a new epigenetic regulator that controls thermogenic adipocyte differentiation and function. We show that deletion of DOT1L in thermogenic adipocytes potently protects mice from diet-induced obesity, improves glucose homeostasis, alleviates hepatic steatosis, and facilitates adaptive thermogenesis<i> in vivo</i>. Loss of DOT1L in primary preadipocytes significantly promotes brown and beige adipogenesis and thermogenesis<i> in vitro</i>. Mechanistically, DOT1L epigenetically regulates the BAT-selective gene program through modulating H3K79 methylation, in particular H3K79me2 modification. Thus, our study demonstrates that DOT1L exerts an important role in energy homeostasis by regulating thermogenic adipocyte differentiation and function.

2021 ◽  
Author(s):  
Lin Shuai ◽  
Bo-Han Li ◽  
Hao-Wen Jiang ◽  
Lin Yang ◽  
Jia Li ◽  
...  

Brown and beige adipocytes are characterized as thermogenic adipocytes and have great potential for treating obesity and associated metabolic diseases. Here, we identify a conserved mammalian lysine 79 of histone H3 (H3K79) methyltransferase, disruptor of telomeric silencing -1 like (DOT1L), as a new epigenetic regulator that controls thermogenic adipocyte differentiation and function. We show that deletion of DOT1L in thermogenic adipocytes potently protects mice from diet-induced obesity, improves glucose homeostasis, alleviates hepatic steatosis, and facilitates adaptive thermogenesis<i> in vivo</i>. Loss of DOT1L in primary preadipocytes significantly promotes brown and beige adipogenesis and thermogenesis<i> in vitro</i>. Mechanistically, DOT1L epigenetically regulates the BAT-selective gene program through modulating H3K79 methylation, in particular H3K79me2 modification. Thus, our study demonstrates that DOT1L exerts an important role in energy homeostasis by regulating thermogenic adipocyte differentiation and function.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A45-A46
Author(s):  
Evangelia Evelyn Tsakiridis ◽  
Marisa Morrow ◽  
Andrea Llanos ◽  
Bo Wang ◽  
Alison Holloway ◽  
...  

Abstract Deltamethrin is a commonly used pesticide for the control of mosquito populations. Despite widespread use, the effects of deltamethrin on adiposity and glucose homeostasis have been equivocal with some studies showing increased, decreased and no effect on adiposity and glycemic control. However, no study to date has investigated the effect of deltamethrin in mice housed at thermoneutral temperatures, which is important for modelling metabolic diseases in rodents due to reduced thermal stress and constitutive activation of brown adipose tissue. In the current study we demonstrate for the first time that deltamethrin reduces uncoupling protein-1 expression in brown adipocytes cultured in vitro at concentrations as low as 1pm. Meanwhile, in-vivo deltamethrin does not appear to alter glycemic control or promote adiposity at exposures equivalent to 0.01, 0.1 or 1.0 mg/kg/day. Together, our study demonstrates environmentally relevant exposure to deltamethrin does not exacerbate diet induced obesity or insulin resistance.


2021 ◽  
Vol 22 (11) ◽  
pp. 5906
Author(s):  
Bruna B. Brandão ◽  
Ankita Poojari ◽  
Atefeh Rabiee

The concerning worldwide increase of obesity and chronic metabolic diseases, such as T2D, dyslipidemia, and cardiovascular disease, motivates further investigations into preventive and alternative therapeutic approaches. Over the past decade, there has been growing evidence that the formation and activation of thermogenic adipocytes (brown and beige) may serve as therapy to treat obesity and its associated diseases owing to its capacity to increase energy expenditure and to modulate circulating lipids and glucose levels. Thus, understanding the molecular mechanism of brown and beige adipocytes formation and activation will facilitate the development of strategies to combat metabolic disorders. Here, we provide a comprehensive overview of pathways and players involved in the development of brown and beige fat, as well as the role of thermogenic adipocytes in energy homeostasis and metabolism. Furthermore, we discuss the alterations in brown and beige adipose tissue function during obesity and explore the therapeutic potential of thermogenic activation to treat metabolic syndrome.


2018 ◽  
Vol 243 (10) ◽  
pp. 826-835 ◽  
Author(s):  
Weinan Zhou ◽  
Elizabeth A Davis ◽  
Megan J Dailey

The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by intestinal epithelial stem cells located in the intestinal crypts. Obesity affects this process and results in changes in the size and function of the tissue. Because both the amount of food intake and the composition of the diet are contributing factors to developing and maintaining obesity, it is necessary to tease apart the separate contributions of obesity versus the type/amount of diet in driving the epithelial changes. C57BL/6J mice were fed a 60% high-fat diet versus a 10% low-fat diet for three months. A pair fed group was included (mice were fed with high-fat diet, but in equal kcal as that eaten by the low-fat diet- fed mice to keep them lean). We investigated the differences in (1) crypt-villus morphology in vivo, (2) the number and function of differentiated epithelial cell types in vivo, and (3) lasting effects on intestinal epithelial stem cell proliferation and growth in vitro. We found that high-fat diet-induced obesity, independent of the high-fat diet, increased crypt depth, villus height, the number of intestinal epithelial stem cells and goblet cells in vivo, and enhanced the size of the enterospheres developed from isolated IESCs in vitro. In addition, there is an interaction of obesity, type of diet, and availability of the diet (pair fed versus ad libitum) on protein and mRNA expression of alkaline phosphatase (an enzyme of enterocytes). These results suggest that high-fat diet-induced obesity, independent of the high-fat diet, induces lasting effects on intestinal epithelial stem cell proliferation, and drives the differentiation into goblet cells, but an interaction of obesity and diet drives alterations in the function of the enterocytes. Impact statement This study investigates whether obesity or the type/amount of diet differentially alters the proliferation, differentiation, growth, and function of the intestinal epithelial tissue. Although diet-induced obesity is known to alter the growth and function of the epithelium in vivo and cause lasting effects in intestinal epithelial stem cells (IESCs) in vitro, we are the first to tease apart the separate contributions of obesity versus the type/amount of diet in these processes. We found that high-fat diet (HFD)-induced obesity, independent of the HFD, drives lasting effects on IESC proliferation and differentiation into goblet cells, which may contribute to the growth of the epithelium. In addition, there is an interaction of obesity, type of diet, and availability of the diet (PF versus ad libitum) on the function of enterocytes. Identification of the factors driving the epithelial changes may provide new therapeutic strategies to control altered tissue growth and function associated with obesity.


2020 ◽  
pp. 1-14
Author(s):  
Shelby Shrigley ◽  
Fredrik Nilsson ◽  
Bengt Mattsson ◽  
Alessandro Fiorenzano ◽  
Janitha Mudannayake ◽  
...  

Background: Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson’s disease (PD) and they provide the option of using the patient’s own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. Objective: To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. Methods: Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. Results: Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. Conclusion: This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1020
Author(s):  
Burak Ibrahim Arioz ◽  
Emre Tarakcioglu ◽  
Melis Olcum ◽  
Sermin Genc

NLRP3 inflammasome is a part of the innate immune system and responsible for the rapid identification and eradication of pathogenic microbes, metabolic stress products, reactive oxygen species, and other exogenous agents. NLRP3 inflammasome is overactivated in several neurodegenerative, cardiac, pulmonary, and metabolic diseases. Therefore, suppression of inflammasome activation is of utmost clinical importance. Melatonin is a ubiquitous hormone mainly produced in the pineal gland with circadian rhythm regulatory, antioxidant, and immunomodulatory functions. Melatonin is a natural product and safer than most chemicals to use for medicinal purposes. Many in vitro and in vivo studies have proved that melatonin alleviates NLRP3 inflammasome activity via various intracellular signaling pathways. In this review, the effect of melatonin on the NLRP3 inflammasome in the context of diseases will be discussed.


Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 884
Author(s):  
Marta Cherubini ◽  
Scott Erickson ◽  
Kristina Haase

Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models.


2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


Sign in / Sign up

Export Citation Format

Share Document