scholarly journals Preparation of Prereduced Pellets by Pyrite Cinder Containing Nonferrous Metals with High Temperature Chloridizing-reduction Roasting Technology

2014 ◽  
Vol 54 (10) ◽  
pp. 2162-2168 ◽  
Author(s):  
Dong Chen ◽  
De-qing Zhu ◽  
Yao Chen
2017 ◽  
Vol 36 (10) ◽  
pp. 971-978
Author(s):  
Tiejun Chun ◽  
Hongming Long ◽  
Zhanxia Di ◽  
Qingmin Meng ◽  
Ping Wang

AbstractPyrite cinder is a solid waste generated by the sulfuric acid industry and is considered environmentally hazardous. It contains abundant iron, such as Fe2O3 and Fe3O4, and nonferrous metals, such as zinc, lead and copper. In order to try and recycle this material as a source of Fe units, preparation of direct reduction iron (DRI) using pyrite cinder was investigated by coal-based grate rotary kiln process. This process includes chloridizing and reduction roasting. The results show that 97 % lead was removed after the chloridizing process. Copper was only detached in chloridizing process with the removal rate of 78.49 %. Furthermore, the removal of zinc was carried out in both chloridizing and reduction process, and the removal rate of 96.76 % was achieved after reduction roasting. The final product representing a metallization degree of 93.36 % with compressive strength of 1,198 N/pellet was obtained after the oxidized pellets were reduced at 1,050 °C for 80 min.


1961 ◽  
Vol 5 ◽  
pp. 191-212 ◽  
Author(s):  
H.J. Goldschmidt

AbstractHigh-temperature X-ray powder photography has proved of great value in many directions in the metallurgical field. Some of the successes achieved and problems encountered by the author and other investigators using an established-type camera (British Unicam) for temperatures up to 1400°C will be discussed. This will be by way of specific case histories, chosen both for their own scientific interest and to illustrate the techniques employed. The applications concern phase transformations and the measurement of coefficients of thermal expansion in iron and steels, as well as in some nonferrous metals and inorganic compounds.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Sign in / Sign up

Export Citation Format

Share Document