scholarly journals Modeling of magnetic properties (Cr/NiO/Ni) based multi-layers deposited by magnetron sputtering using Preisach model

Author(s):  
A. Bendjerad ◽  
A. Benhaya ◽  
S. Boukhtache ◽  
M. Zergoug ◽  
K. Benyahia

In the present work, thin films of Cr/NiO/Ni are deposited on glass substrates using RF magnetron sputteringtechnique. The uniformity and homogeneity of the prepared films were controlled by varying the power of the source, the target-substrate distance and the pressure of the plasma gas which is argon. In order to test the Preisach Model, we carried outmeasurements according to two directions: parallel and perpendicular to the substrate plane using a Vibrating SampleMagnetometer at room temperature. Good agreement has been obtained by comparing the experimental hysteresis loops to theones determined using Preisach model. We conclude that this model is powerful in predicting the magnetic properties ofmultilayer systems. # Cr/NiO/Ni #MAGNETRON_SPUTTERING #PREISACH MODEL #MAGNETIC_HYSTERESIS

2013 ◽  
Vol 690-693 ◽  
pp. 1702-1706 ◽  
Author(s):  
Shuang Jun Nie ◽  
Hao Geng ◽  
Jun Bao Wang ◽  
Lai Sen Wang ◽  
Zhen Wei Wang ◽  
...  

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.


2011 ◽  
Vol 284-286 ◽  
pp. 2182-2186 ◽  
Author(s):  
Hua Fu Zhang ◽  
Han Fa Liu ◽  
Chang Kun Yuan

Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) and aluminium-doped zinc oxide (ZnO:Al) thin films were deposited on glass substrates by direct current (DC) magnetron sputtering at room temperature. The crystallinity of ZnO:Zr and ZnO:Al thin films increases as the target-to-substrate distance decreases, and the crystallinity of ZnO:Zr films is found to be always better than that of ZnO:Al films prepared under the same deposition conditions. As the target-to-substrate distance decreases, the resistivity of both film types decreases greatly while the optical transmittance does not change much with the variation of the distance. When target-to-substrate distance is 4.1 cm, the lowest resistivity of 6.0×10-4Ω·cm and 5.7×10-4Ω·cm was obtained for ZnO:Zr and ZnO:Al films, respectively. The figure of merit arrived at a maximum value of 3.98×10-2Ω for ZnO:Zr films lower than 5×10-2Ω for ZnO:Al films.


2013 ◽  
Vol 829 ◽  
pp. 396-400
Author(s):  
Younes Jalalizadeh ◽  
Ali Ghasemi ◽  
Gholam Reza Gordani

The main goal of this study is to investigate the structural and magnetic properties of FePt thin film with respect to the annealing tempreture. The FePt thin films were deposited by RF magnetron sputtering on Corning glass substrates at a room temperature. The films were then post-annealed at the Range of 575-675°C for 20 s by rapid thermal annealing (RTA) at a high heating ramp rate of 100 °Cs. Phase identification of thin films was performed using X-ray diffraction (XRD). With employing SEM, the size and uniformity of grains were studied. Moreover magnetic properties of annealed thin films were evaluated using a vibrating sample magnetometer (VSM). XRD results showed that the ordered FePt structure is formed at 625°C. According to the hysteresis loops, maximum out-of-plane and in-plane coercivity reached 7kOe. this value was achieve at 675°C .These results reveal its significant potential as magnetic recording media for high-density recording.


2012 ◽  
Vol 557-559 ◽  
pp. 661-664
Author(s):  
Li Yun Jia ◽  
Jia Ling Xu ◽  
Jiao Qu

Co (t nm)/TiO2(200 nm) films were prepared by DC facing-target magnetron reactive sputtering system onto glass substrates at room temperature. The influence of the Co distribution on microstructure and magnetic properties of films was investigated in detail. The results indicate that CoTiO2thin films with t= 2 nm island-type deposited showed a homogeneous structure, and pure ferromagnetic properties of thin films are only attributed to the CoTiO2phases. On the other hand, in case of thin films above t= 2nm, the overall ferromagnetic properties depended on both CoTiO2and CoTi phases.


2004 ◽  
Vol 19 (4) ◽  
pp. 352-355 ◽  
Author(s):  
Wei Tao Zheng ◽  
Xin Wang ◽  
Xianggui Kong ◽  
Hongwei Tian ◽  
Shansheng Yu ◽  
...  

Fe–N thin films were deposited on glass substrates by dc magnetron sputtering under various Ar∕N2 discharge conditions. Crystal structures and elemental compositions of the films were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. Magnetic properties of the films were measured using a superconducting quantum interference device magnetometer. Films deposited at different N2∕(Ar+N2) flow ratios were found to have different crystal structures and different nitrogen contents. When the flow ratios were 60%, 50%, and 30%, a nonmagnetic single-phase FeN was formed in the films. At the flow ratio of 10%, two crystal phases of γ′-Fe4N and ε-Fe3N were detected. When the flow ratio reduced to 5%, a mixture of α-Fe, ε-Fe3N, FeN0.056, and α″-Fe16N2 phases was obtained. The value of saturation magnetization for the mixture was found to be larger than that of pure Fe.


2016 ◽  
Vol 13 (2) ◽  
pp. 229-238 ◽  
Author(s):  
Adel Bendjerad ◽  
Sebti Boukhtache ◽  
Abdelhamid Benhaya ◽  
Dominique Luneau ◽  
Hak El ◽  
...  

2021 ◽  
Vol 2083 (2) ◽  
pp. 022070
Author(s):  
Xiaofen Liu ◽  
Xiujuan Wang ◽  
Zirui Zhang ◽  
Jin Cao

Abstract Polycrystalline BiFeO3 thin films on ITO glass substrates were prepared by radio frequency magnetron sputtering using a Bi1.1FeO3 target. The samples which were annealed with different annealing conditions are pure without impurities. We measured the magnetic properties and ferroelectricity of the BiFeO3 films. The measurement results show that the magnetic and electrical properties of the BiFeO3 films are significantly different under different annealing conditions.


1996 ◽  
Vol 433 ◽  
Author(s):  
Jin Wook Jang ◽  
Woon Jo Cho ◽  
Taek Sang Hahn ◽  
Sang Sam Choi ◽  
Su Jin Chung

AbstractThickness dependence of ferroelectric and structural properties of BaTiO3 thin films were investigated. Stoichiometric BaTiO3 thin films were prepared by off-axis rf magnetron sputtering on polycrystalline Pt substrates at 700°C. Film thickness range was 2,100–20,000Å. Room temperature permittivity, frequency dependence of permittivity, and D-E hysteresis loops were measured and lattice parameters were determined as a function of the film thickness. It has been found that these properties had the strong dependence on film thickness, which was mainly due to grain sizes of BaTiO3 thin films. The main cause of thickness dependence of dielectric properties was thought to be crystallinity and stresses of thin films which is resulted from changes in grain sizes.


2010 ◽  
Vol 1250 ◽  
Author(s):  
A. C. Lourenço ◽  
F. Figueiras ◽  
S. Das ◽  
J. S. Amaral ◽  
G. N. Kakazei ◽  
...  

AbstractLow temperature (400°C) deposition of ferromagnetic Ni-Mn-Ga thin films is successfully performed via rf magnetron sputtering technique using co-deposition of two targets Ni50Mn50 and Ni50Ga50 on sapphire (0001) and Si (100) substrates. The films are in part amorphous with significant degree of crystallinity. The obtained crystallographic structure is shown to be substrate-dependent. Films on both substrates are ferromagnetic at room temperature (Curie temperature ∼ 332.5K) with well-defined hysteresis loops, low coercivity (∼ 100 Oe) and a saturation magnetization of ∼ 200 emu/cc. At low temperature (5 K), both films show increased magnetization value with wider hysteresis loops having higher coercivity and remanent magnetization. The process is therefore effective in achieving the appropriate thermodynamic conditions to deposit thin films of the Ni-Mn-Ga austenitic phase (highly magnetic at room temperature) at relatively low substrate temperature without the need for post-deposition annealing or further thermal treatment, which is prerequisite for the device fabrication.


2020 ◽  
Vol 1012 ◽  
pp. 119-124
Author(s):  
Paulo Victor Nogueira da Costa ◽  
Rodrigo Amaral de Medeiro ◽  
Carlos Luiz Ferreira ◽  
Leila Rosa Cruz

This work investigates the microstructural and morphological changes on CIGS thin films submitted to a post-deposition heat treatment. The CIGS 1000 nm-thick films were deposited at room temperature by RF magnetron sputtering onto glass substrates covered with molybdenum films. After deposition, the samples were submitted to a heat treatment, with temperatures ranging from 450 to 575 oC. The treatment was also carried out under a selenium atmosphere (selenization), from 400 to 500 oC. Morphological analyzes showed that the as-deposited film was uniform and amorphous. When the treatment was carried out without selenization, the crystallization occurred at or above 450 oC, and the grains remained nanosized. However, high temperatures led to the formation of discontinuities on the film surface and the formation of extra phases, as confirmed by X-ray diffraction data. The crystallization of the films treated under selenium atmosphere took place at lower temperatures. However, above 450 °C the film surface was discontinuous, with a lot of holes, whose amount increased with the temperature, showing that the selenization process was very aggressive. X-ray diffraction analyses showed that the extra phases were eliminated during selenization and the films had a preferential orientation along [112] direction. The results indicate that in the manufacturing process of solar cells, CIGS films deposited at room temperature should be submitted to a heat treatment carried out at 450 °C (without selenization) or 400 °C (with selenization).


Sign in / Sign up

Export Citation Format

Share Document