scholarly journals Enhanced Ultraviolet Photodetector Based on Mg-Doped ZnO Nanorods Films

2019 ◽  
Vol 29 (3) ◽  
pp. 158 ◽  
Author(s):  
Hussein Abdullah Hameed

Magnesium-doped zinc oxide (ZnO: Mg) nanorods and nanotubes films were prepared by hydrothermal method deposited on glass substrates. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and optical absorption spectroscopy (UV) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of Mg doped ZnO NRs. The Photoluminescence of the undoped and Mg-doped ZnO NRs displayed a near band edge. At 10 V bias, the metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector performance of the Mg-doped ZnO prepared for various Mg concentrations of 0.0, 0.02, and 0.06 was investigated under radiation of 40μW/cm2 at the wavelengths of 365 and 385 nm UV light. The responsivity, detectivity and quantum efficiency of Mg-doped based on MSM detector were 0.118A/W, 1.0579*1012 and 40.05157 under UV of wavelength 365nm respectively.

Author(s):  
مازن عوني مهدي ◽  
مروة جواد كاظم ◽  
هديل علاء عيسى

Zinc oxide (ZnO) nanorods are prepared onto glass substrates via chemical bath deposition method. ZnO nanoparticles is prepared onto glass substrate to act as a seed layer for grown ZnO NRs. Field Emission Scanning Electron Microscope (FESEM) image confirmed that the grown rods have hexagonal shape covered the surface of substrate. Further, the prepared ZnO NRs appeared good crystallinity according to X-ray diffraction method. The absorption edge for seeds nanoparticles layer appeared at wavelength of 362nm (3.42 eV) while it was at around 479nm (3.27 eV) nm for the grown ZnO NRs. The grown ZnO NRs showed two emission peaks at 381nm and 540nm corresponding to near band-to-band electron-hole recombination and oxygen vacancies, respectively. Degradation rate of methylene blue (MB) dye was 0.01% after 1h of illumination by UV light and increased to 71.4% after 4h of illumination.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650039 ◽  
Author(s):  
Jingyuan Piao ◽  
Li-Ting Tseng ◽  
Kiyonori Suzuki ◽  
Jiabao Yi

Na-doped ZnO nanorods have been fabricated through a hydrothermal method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the d spacing of ZnO increases with increasing doping concentration, suggesting the effective incorporation of dopant Na in the samples. Electron paramagnetic resonance (EPR) measurements indicate that there are shallow donors in pure ZnO samples and the shallow donors are strongly prohibited by Na doping. In addition, the resonance at g = 2.005 suggests the formation of Zn vacancies. Magnetic measurements indicate that pure ZnO is paramagnetic and Na doping leads to ferromagnetism at room temperature. Moreover, 0.5% Na-doped ZnO nanorods exhibits the largest saturation magnetization.


2015 ◽  
Vol 1804 ◽  
pp. 31-36 ◽  
Author(s):  
Melina Perez-Altamar ◽  
Hilary Marrero ◽  
Milton Martínez Julca ◽  
Oscar Perales Perez

ABSTRACTThe present work focuses on the polyol-mediated synthesis of pure and Mg-doped ZnO nanoparticles. The synthesized samples were characterized via X-ray diffraction, Fourier transformed infrared spectroscopy, ultraviolet visible spectroscopy and photoluminescence techniques. The Standard Plate Count was used to assess the bactericidal properties of the nanoparticles against E. coli at 1000 ppm and 1500 ppm of concentration. The capacity of the Zn-Mg oxides to generate singlet oxygen (SO) species was also evaluated. X-ray diffraction information evidenced the formation of ZnO-wurtzite; no diffraction peaks corresponding to isolated Mg-phases were detected. The average crystallite size of the Zn-Mg oxide nanocrystals was estimated in the 6nm - 7nm range. Infrared spectroscopy measurements confirmed the formation of the oxide with a Metal-Oxygen band centered on 536 cm-1; other bands associated to the functional groups of polyol by product were also observed. The exciton peak of UV spectrum suggests similarity in the particle size with the dopant addition. The effect of particle composition (i.e. doping level) on the corresponding generation of SO and bactericidal capacity is presented and discussed.


2015 ◽  
Vol 827 ◽  
pp. 43-48
Author(s):  
Annisa Noorhidayati ◽  
Mia Putri Rahmawati ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

Transition metal ions (Co and Cr) doped ZnO nanoparticles supported on natural zeolite were synthesized using co-precipitation method. The synthesized samples were characterized by means of X-ray diffraction, energy dispersive X-ray, Fourier-transform infrared absorption, and UV-visible diffuse reflectance spectroscopy. The samples were further used as photocatalyst for degradation of methyl orange and methylene blue in aqueous solutions under UV light irradiation. The results showed that zeolite supported Cr-doped ZnO nanoparticles is more efficient compared with zeolite supported Co-doped ZnO nanoparticles. It is also revealed that zeolite supported samples possessed higher photocatalytic efficiency compared to bare samples.


2009 ◽  
Vol 5 ◽  
pp. 223-230 ◽  
Author(s):  
P. Suresh Kumar ◽  
M. Yogeshwari ◽  
A. Dhayal Raj ◽  
D. Mangalaraj ◽  
D. Nataraj ◽  
...  

ZnO nanorods (NRs) have been synthesized by a chemical bath deposition (CBD) method on simple glass substrate that had been precoated by successive ionic layer absorption and reaction (SILAR) with a thin ZnO film. ZnO NR array was obtained by using zinc acetate and hexamethylenetetramine as aqueous solutions at optimized pH concentration and deposition time. X-ray diffraction (XRD) and SEM analysis were used to confirm the growth of ZnO nanorods. The pH and deposition time of the solution was found to influence the growth behavior of ZnO NRs. PL analysis also reflected the growth behavior of ZnO NRs.


2007 ◽  
Vol 31 ◽  
pp. 39-41 ◽  
Author(s):  
Lee Siang Chuah ◽  
Hassan Zainuriah ◽  
Abu Hassan Haslan

This paper presents the structural and optical studies of porous GaN sample compared to the corresponding as grown GaN. The samples were investigated by scanning electron microscopy (SEM), high resolution x-ray diffraction (HRXRD), and photoluminescence (PL). The porous area is very uniform, with pore diameter in the range of 80-110 nm. XRD measurements showed that the (0002) diffraction plane peak width of porous samples was slightly broader than the as-grown sample. PL measurements revealed that the near band edge peak of the porous samples were redshifted. Metal-semiconductor-metal (MSM) photodiode was fabricated on the samples. For as grown GaN sample, this detector shows a sharp cut-off wavelength at 362 nm. A maximum responsivity of 0.258 A/W was achieved at 360 nm. For the porous GaN sample, this detector shows a sharp cut-off wavelength at 364 nm. A maximum responsivity of 0.771 A/W was achieved at 363 nm.


2021 ◽  
Author(s):  
Santanu Maity ◽  
P.P Sahu ◽  
Tiju Thomas

Abstract ZnO nanostructures are promising for a wide range of applications, including gas sensors. Ethanol sensing using ZnO remains unexplored though. In this paper, we report ethanol-sensing using un-doped ZnO nano flowers and Mg doped ZnO nano flowers. These are grown using a rather simple chemo-thermal process, making this a plausibly scalable technology. To study the structural and morphological properties of undoped ZnO and Mg doped ZnO nanoflowers, Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), x-ray diffraction and Field Emission Scanning Electron Microscopy (FESEM) are carried out. Ethanol sensing properties of undoped ZnO and Mg doped ZnO nanoflower devices are investigated toward different ethanol concentration (concentration range of 1–600 ppm at 100°C–200°C). Our findings show that 15% Mg doped ZnO nano flower is better than ZnO nano flower for ethanol gas-sensing applications.


2011 ◽  
Vol 374-377 ◽  
pp. 956-959
Author(s):  
Li Yun Yang ◽  
Gui Peng Feng ◽  
Yong Cai Zhang

ZnO2 nanorods were synthesized via hydrothermal treatment of 2ZnCO3•3Zn(OH)2 powder in 30 mass% H2O2 aqueous solution at 170 °C for 12 h, and characterized by means of X-ray diffraction, transmission electron microscopy and UV–vis diffuse reflectance spectra. Besides, the photocatalytic activity of the as-synthesized ZnO2 nanorods was tested for the degradation of methyl orange in distilled water under UV light irradiation.


2012 ◽  
Vol 485 ◽  
pp. 144-148
Author(s):  
Jian Lin Chen ◽  
Yan Jie Ren ◽  
Jian Chen ◽  
Jian Jun He ◽  
Ding Chen

Preferentially oriented Al-doped ZnO thin films with doping concentration of 1, 2, 3, 5 and 10 mol% respectively were prepared on glass substrates via sol-gel route. The crystallinity of films was characterized by X-ray diffraction and the surface morphologies were observed by scanning electron microscopy. The results show that ZnO:Al films at low doping concentration (1, 2 mol%) grow into dense homogenous microstructure. However, as for high doping concentration (3, 5, 10 mol%), Al3+ precipitate in the form of amorphous Al2O3 and ZnO:Al films exhibit heterogeneous nucleation and exceptional growth of the big plate-like crystals at the interface of the amorphous Al2O3 and ZnO:Al matrix.


Sign in / Sign up

Export Citation Format

Share Document