scholarly journals Preparation and Characterization ZnO Nanorods for Photocatalyst Application

Author(s):  
مازن عوني مهدي ◽  
مروة جواد كاظم ◽  
هديل علاء عيسى

Zinc oxide (ZnO) nanorods are prepared onto glass substrates via chemical bath deposition method. ZnO nanoparticles is prepared onto glass substrate to act as a seed layer for grown ZnO NRs. Field Emission Scanning Electron Microscope (FESEM) image confirmed that the grown rods have hexagonal shape covered the surface of substrate. Further, the prepared ZnO NRs appeared good crystallinity according to X-ray diffraction method. The absorption edge for seeds nanoparticles layer appeared at wavelength of 362nm (3.42 eV) while it was at around 479nm (3.27 eV) nm for the grown ZnO NRs. The grown ZnO NRs showed two emission peaks at 381nm and 540nm corresponding to near band-to-band electron-hole recombination and oxygen vacancies, respectively. Degradation rate of methylene blue (MB) dye was 0.01% after 1h of illumination by UV light and increased to 71.4% after 4h of illumination.

2019 ◽  
Vol 29 (3) ◽  
pp. 158 ◽  
Author(s):  
Hussein Abdullah Hameed

Magnesium-doped zinc oxide (ZnO: Mg) nanorods and nanotubes films were prepared by hydrothermal method deposited on glass substrates. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and optical absorption spectroscopy (UV) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of Mg doped ZnO NRs. The Photoluminescence of the undoped and Mg-doped ZnO NRs displayed a near band edge. At 10 V bias, the metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector performance of the Mg-doped ZnO prepared for various Mg concentrations of 0.0, 0.02, and 0.06 was investigated under radiation of 40μW/cm2 at the wavelengths of 365 and 385 nm UV light. The responsivity, detectivity and quantum efficiency of Mg-doped based on MSM detector were 0.118A/W, 1.0579*1012 and 40.05157 under UV of wavelength 365nm respectively.


2018 ◽  
Vol 32 (17) ◽  
pp. 1850185 ◽  
Author(s):  
Yun-Hui Si ◽  
Yu Xia ◽  
Ya-Yun Li ◽  
Shao-Ke Shang ◽  
Xin-Bo Xiong ◽  
...  

A series of BiFeO3 and BiFe[Formula: see text]Mn[Formula: see text]O3 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by a hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS) and UV–Vis diffuse reflectance spectroscopy, and their photocatalytic activity was studied by photocatalytic degradation of methylene blue in aqueous solution under visible light irradiation. The band gap of BiFeO3 was significantly decreased from 2.26 eV to 1.90 eV with the doping of Mn. Furthermore, the 6% Mn-doped BiFeO3 photocatalyst exhibited the best activity with a degradation rate of 94% after irradiation for 100 min. The enhanced photocatalytic activity with Mn doping could be attributed to the enhanced optical absorption, increment of surface reactive sites and reduction of electron–hole recombination. Our results may be conducive to design more efficient photocatalysts responsive to visible light among narrow band gap semiconductors.


2012 ◽  
Vol 583 ◽  
pp. 86-90 ◽  
Author(s):  
Hai Bin Li ◽  
Xin Yong Li ◽  
Yan De Song ◽  
Shu Guang Chen ◽  
Ying Wang ◽  
...  

TiO2nanotubes were prepared via a hydrothermal route. CeO2nanoparticles with diameters around 5nm were loaded onto the surface of TiO2nanotubes via a deposition approach followed by a calcination process. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy (UV-vis) were applied for the characterization of the as-prepared CeO2/TiO2nanotubes composites. The results show that CeO2particles are highly dispersed on the surface of TiO2nanotubes. The TiO2 nanotubes are modified to response to the visible light due to the combination with CeO2. The CeO2/TiO2nanotubes composites with a CeO2/TiO2atomic ratio of 2.5% show a further improvement on the photocatalytic activity for degradation of Rhodamine B in water. The presence of CeO2improves the light absorption of TiO2nanotubes and inhibits the electron-hole recombination.


2011 ◽  
Vol 364 ◽  
pp. 35-39 ◽  
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Hafiz Mamat ◽  
Rafidah Ahmad ◽  
Mohamad Rusop

Rectifying behavior more than 3 orders of aligned zinc oxide (ZnO) nanorods grown on Mg0.3Zn0.7O thin film template using chemical bath deposition method was observed, giving a barrier height of 0.75 eV, and the ideality factor achieved was almost 6, which was analyzed using thermionic emission theory. Field emission scanning electron microscope (FESEM) images revealed that the grown ZnO was in hexagonal shape, uniformly distributed and in vertically aligned form. The crystallinity of the sample being studied using X-ray diffraction (XRD), where the highest peak was found at (002) phase, confirming that high crytallinity of ZnO was attained. The effect of metal/semiconductor junction between metal and aligned ZnO nanorods was discussed in further details.


2009 ◽  
Vol 5 ◽  
pp. 223-230 ◽  
Author(s):  
P. Suresh Kumar ◽  
M. Yogeshwari ◽  
A. Dhayal Raj ◽  
D. Mangalaraj ◽  
D. Nataraj ◽  
...  

ZnO nanorods (NRs) have been synthesized by a chemical bath deposition (CBD) method on simple glass substrate that had been precoated by successive ionic layer absorption and reaction (SILAR) with a thin ZnO film. ZnO NR array was obtained by using zinc acetate and hexamethylenetetramine as aqueous solutions at optimized pH concentration and deposition time. X-ray diffraction (XRD) and SEM analysis were used to confirm the growth of ZnO nanorods. The pH and deposition time of the solution was found to influence the growth behavior of ZnO NRs. PL analysis also reflected the growth behavior of ZnO NRs.


2011 ◽  
Vol 374-377 ◽  
pp. 956-959
Author(s):  
Li Yun Yang ◽  
Gui Peng Feng ◽  
Yong Cai Zhang

ZnO2 nanorods were synthesized via hydrothermal treatment of 2ZnCO3•3Zn(OH)2 powder in 30 mass% H2O2 aqueous solution at 170 °C for 12 h, and characterized by means of X-ray diffraction, transmission electron microscopy and UV–vis diffuse reflectance spectra. Besides, the photocatalytic activity of the as-synthesized ZnO2 nanorods was tested for the degradation of methyl orange in distilled water under UV light irradiation.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750040 ◽  
Author(s):  
Xiaoyun Hao ◽  
Junyan Gong ◽  
Lizhen Ren ◽  
Dongen Zhang ◽  
Xin Xiao ◽  
...  

The polyaniline/bismuth oxybromide (PANI/BiOBr) hybrids materials have been synthesized hydrothermally in the presence of PANI. The PANI/BiOBr hybrids materials were confirmed by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and ultraviolet–visible diffuse reflectance spectroscopies. Among the hybrid photocatalysts, PANI/BiOBr-0.2 showed the highest photocatalytic properties for the degradation of rhodamine B (RhB), and the increased photocatalytic properties could be due to photosensitization and the inhibited electron–hole recombination.


2006 ◽  
Vol 957 ◽  
Author(s):  
Patcharee Charoensirithavorn ◽  
Susumu Yoshikawa

ABSTRACTHere we present a convenient solution-based method, which can afford a procedure to easily fabricate highly oriented ZnO nanorods on substrate at relatively low temperatures. The as-synthesized products have been characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The results revealed that a densely packed and perpendicularly oriented single-crystalline ZnO nanorod arrays grew vertically on the fluorine-doped SnO2 transparent conducting oxide (FTO) glass substrates. In addition, we found that the length of the nanorod could be freely modified by controlling the solution temperature.


2014 ◽  
Vol 979 ◽  
pp. 204-207
Author(s):  
Araya Mungchamnankit ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
Saksorn Limwichean ◽  
Mati Horprathum ◽  
...  

We presented the effect of annealing temperature on nanocrystallite growth toward zinc oxide (ZnO) nanorods based on the hydrothermal process. The hydrothermal growths of the ZnO nanorods were prepared with zinc nitrate hexahydrate and hexamethylenetetramine solution at 90°C for 6 hours. The structural, morphological, optical, and anti-bacterial properties of the ZnO nanorods, prepared at different annealing temperatures, were characterized by grazing-incidence X-ray diffraction (GIXRD), field-emission scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometer. The GIXRD patterns of the ZnO nanorods corresponded to the wurtzite structure. The FE-SEM results showed that the prepared ZnO nanorods were in the form of the hexagonal shape. The anti-bacterial behaviors of suspension of ZnO nanorods against Escherichia coli (gram-negative) would be discussed in this paper.


2017 ◽  
Vol 728 ◽  
pp. 359-363
Author(s):  
Voranuch Thongpool ◽  
Akapong Phunpueok

In this study, reduced graphene oxide and Titanium dioxide (RGO/TiO2) photocatalysts were synthesized by ultrasonic mixing. The prepared RGO/TiO2 photocatalysts were characterized by scanning electron microscopy, X-ray diffraction spectroscopy and UV-visible spectrophotometry. The performance of the RGO/TiO2 photocatalysts was studied under UV and visible light evaluated by the degradation of the methylene blue (MB). In the photocatalytic process, all the RGO/TiO2 photocatalysts showed better photocatalytic activity than commercial TiO2 nanopowder (P25) under visible light, which showed that RGO could reduce electron-hole recombination on the TiO2, led to the improvement of the photocatalytic performance under visible light


Sign in / Sign up

Export Citation Format

Share Document