scholarly journals Strain gages based on gallium arsenide whiskers

Author(s):  
A. Druzhinin ◽  
◽  
O. Kutrakov ◽  
I. Ostrovskii ◽  
N. Liakh-Kaguy ◽  
...  

Strain-resistant properties of GaAs whiskers and ribbons of p- and n-type conductivity with various length (0.3–7 mm) and diameter (10–40 μm) have been investigated in a wide range of temperatures. Strain gages based on heavily doped p-type conductivity GaAs whiskers have linear deformation characteristics and a weak temperature dependence of strain sensitivity in the temperature range from –20 to +3500 °C. The temperature coefficient of resistance (TСR) of not fixed strain gages is about +(0.12–0.16)% × grad–1. The temperature coefficient of strain sensitivity is –0.03 % × deg–1 in the temperature range –120+800 °C. Strain gages based on n-type GaAs ribbons are characterized by high flexibility and high strain sensitivity. They are capable up to +4000 °C and can be used to measure deformations on curved surfaces at high temperatures. TСR of not fixed strain gages is –0.01 +0.03 % × grad–1. The temperature coefficient of strain sensitivity is –0.16% × deg–1 in the temperature range –120 ... +4000 °С.

2020 ◽  
Vol 30 (34) ◽  
pp. 2003096 ◽  
Author(s):  
Naoomi Yamada ◽  
Yuta Tanida ◽  
Hidenobu Murata ◽  
Takahiro Kondo ◽  
Shougo Yoshida
Keyword(s):  

2014 ◽  
Vol 23 (08) ◽  
pp. 1450107 ◽  
Author(s):  
JUN-DA CHEN ◽  
CHENG-KAI YE

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.


Author(s):  
Г.Б. Галиев ◽  
Е.А. Климов ◽  
А.Н. Клочков ◽  
С.С. Пушкарев ◽  
П.П. Мальцев

AbstractThe electrical properties and photoluminescence features of uniformly Si-doped GaAs layers grown on GaAs substrates with the (100) and (111)A crystallographic orientations of the surface are studied. The samples are grown at the same As_4 pressure in the growth temperature range from 350 to 510°C. The samples grown on GaAs(100) substrates possess n -type conductivity in the entire growth temperature range, and the samples grown on GaAs(111)A substrates possess p -type conductivity in the growth temperature range from 430 to 510°C. The photoluminescence spectra of the samples exhibit an edge band and an impurity band. The edge photoluminescence band corresponds to the photoluminescence of degenerate GaAs with n - and p -type conductivity. The impurity photoluminescence band for samples on GaAs(100) substrates in the range 1.30–1.45 eV is attributed to V _As defects and Si_As– V _As defect complexes, whose concentration varies with sample growth temperature. Transformation of the impurity photoluminescence spectra of the samples on GaAs(111)A substrates is interpreted as being a result of changes in the V _As and V _Ga defect concentrations under variations in the growth temperature of the samples.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
E. Tejaswini ◽  
G. Uday Bhaskar Babu ◽  
A. Seshagiri Rao

Abstract In the present study, the temperature effects on the organic carbon and nitrogen removal in an activated sludge process are evaluated. Benchmark Simulation Model No.1 (BSM1) based on activated sludge process is used for all the simulation purposes. A steady state simulation is performed to analyze the effluent concentrations with varying kinetic parameters obtained from different temperature coefficients over a wide range of temperatures from 15 °C to 35 °C. The temperature coefficient ‘a’ is assumed to have different set of values specific to the kinetic parameters, namely, Maximum heterotrophic growth rate \left( {{\mu _{mH}}} \right), Maximum autotrophic growth rate \left( {{\mu _{mA}}} \right), Heterotrophic decay rate \left( {{b_H}} \right), Autotrophic decay rate \left( {{b_A}} \right). The effluent concentration defined in terms of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Suspended Solids (TSS), Total Nitrogen (TN) and Ammonia are observed to be significantly changing with a change in the kinetic parameters which are in turn a strong function of temperature coefficient. Emphasis is laid on the temperature range of 25–30 °C as it is commonly the most operated temperature range in a WWTP in India. It is also noticed that at temperatures <20 °C and >30 °C, the effluent limitations are violated from the standard values.


Author(s):  
Akila C. Thenuwara ◽  
Pralav P. Shetty ◽  
Neha Kondekar ◽  
Chuanlong Wang ◽  
Weiyang Li ◽  
...  

A new dual-salt liquid electrolyte is developed that enables the reversible operation of high-energy sodium-metal-based batteries over a wide range of temperatures down to −50 °C.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Yue ◽  
Da Zhao ◽  
Duc T. T. Phan ◽  
Xiaolin Wang ◽  
Joshua Jonghyun Park ◽  
...  

AbstractThe vascular network of the circulatory system plays a vital role in maintaining homeostasis in the human body. In this paper, a novel modular microfluidic system with a vertical two-layered configuration is developed to generate large-scale perfused microvascular networks in vitro. The two-layer polydimethylsiloxane (PDMS) configuration allows the tissue chambers and medium channels not only to be designed and fabricated independently but also to be aligned and bonded accordingly. This method can produce a modular microfluidic system that has high flexibility and scalability to design an integrated platform with multiple perfused vascularized tissues with high densities. The medium channel was designed with a rhombic shape and fabricated to be semiclosed to form a capillary burst valve in the vertical direction, serving as the interface between the medium channels and tissue chambers. Angiogenesis and anastomosis at the vertical interface were successfully achieved by using different combinations of tissue chambers and medium channels. Various large-scale microvascular networks were generated and quantified in terms of vessel length and density. Minimal leakage of the perfused 70-kDa FITC-dextran confirmed the lumenization of the microvascular networks and the formation of tight vertical interconnections between the microvascular networks and medium channels in different structural layers. This platform enables the culturing of interconnected, large-scale perfused vascularized tissue networks with high density and scalability for a wide range of multiorgan-on-a-chip applications, including basic biological studies and drug screening.


2021 ◽  
Vol 118 (11) ◽  
pp. 112102
Author(s):  
Wang Fu ◽  
Mingkai Li ◽  
Jiashuai Li ◽  
Guojia Fang ◽  
Pan Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document