Life forms

Author(s):  
Stefan Helmreich ◽  
Sophia Roosth

This chapter examines how natural philosophers and scientists in the eighteenth, nineteenth, and twentieth centuries employed the term “life form.” It asks how life came to have a form, where the term “life form” came from, and what “life form” has come to mean in the contemporary moment, when it is possible to use the term to refer to as-yet-conjectural manifestations that may redefine the very referent of life itself. To map the historical transformation of the term “life form,” the chapter draws on Raymond Williams's 1976 Keywords, in which Williams offered histories of keywords in social theory, detailing the shifting, contested meanings of such terms as “culture,” “nature,” and “ideology.” Using this approach, the chapter identifies a move from deductive reasoning to inductive reasoning to abductive reasoning.

Author(s):  
Patrick C. Kyllonen

Reasoning ability refers to the power and effectiveness of the processes and strategies used in drawing inferences, reaching conclusions, arriving at solutions, and making decisions based on available evidence. The topic of reasoning abilities is multidisciplinary—it is studied in psychology (differential and cognitive), education, neuroscience, genetics, philosophy, and artificial intelligence. There are several distinct forms of reasoning, implicating different reasoning abilities. Deductive reasoning involves drawing conclusions from a set of given premises in the form of categorical syllogisms (e.g., all x are y) or symbolic logic (e.g., if p then q). Inductive reasoning involves the use of examples to suggest a rule that can be applied to new instances, invoked, for example, when drawing inferences about a rule that explains a series (of numbers, letters, events, etc.). Abductive reasoning involves arriving at the most likely explanation for a set of facts, such as a medical diagnosis to explain a set of symptoms, or a scientific theory to explain a set of empirical findings. Bayesian reasoning involves computing probabilities on conclusions based on prior information. Analogical reasoning involves coming to an understanding of a new entity through how it relates to an already familiar one. The related idea of case-based reasoning involves solving a problem (a new case) by recalling similar problems encountered in the past (past cases or stored cases) and using what worked for those similar problems to help solve the current one. Some of the key findings on reasoning abilities are that (a) they are important in school, the workplace, and life, (b) there is not a single reasoning ability but multiple reasoning abilities, (c) the ability to reason is affected by the content and context of reasoning, (d) it is difficult to accelerate the development of reasoning ability, and (e) reasoning ability is limited by working memory capacity, and sometimes by heuristics and strategies that are often useful but that can occasionally lead to distorted reasoning. Several topics related to reasoning abilities appear under different headings, such as problem solving, judgment and decision-making, and critical thinking. Increased attention is being paid to reasoning about emotions and reasoning speed. Reasoning ability is and will remain an important topic in education.


Author(s):  
Arindam Basu

In this paper, we introduce the concepts of critically reading research papers and writing of research proposals and reports. Research methods is a general term that includes the processes of observation of the world around the researcher, linking background knowledge with foreground questions, drafting a plan of collection of data and framing theories and hypotheses, testing the hypotheses, and finally, drafting or writing the research to evoke new knowledge. These processes vary with the themes and disciplines that the researcher engages in; nevertheless, common motifs can be found. In this paper, we propose three methods are interlinked: a deductive reasoning process where the structure of the thought can be captured critically; an inductive reasoning method where the researcher can appraise and generate generalisable ideas from observations of the world; and finally, abductive reasoning method where the world can be explained or the phenomena observed can be explained or be accounted for. This step or reasoning is also about framing theories, testing and challenging established knowledge or finding best theories and how theories best fit the observations. We start with a discussion of the different types of statements that one can come across in any scholarly literature or even in lay or semi-serious literature, appraise them, and identify arguments from non-arguments, and explanations from non-explanations. Then we outline three strategies to appraise and identify reasonings in explanations and arguments. We end with a discussion on how to draft a research proposal and a reading/archiving strategy of research.


Author(s):  
Maryam Khorshidi ◽  
Jay Woodward ◽  
Jami J. Shah

A battery of tests for assessing the cognitive skills needed for the conceptual design is being developed. Divergent thinking and visual thinking tests were fully developed and validated previously. This paper focuses on the development of a test on qualitative reasoning skill. Indicators of qualitative reasoning are identified and categorized as: deductive reasoning, inductive reasoning, analogical reasoning, abductive reasoning, and intuitive physics; the derivation of each is based on both cognitive science and empirical studies of design. The paper also considers the metrics for measuring skill levels in different individuals and candidate test items and grading rubric for each skill.


2008 ◽  
Vol 24 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Satomi Shiodera ◽  
Joeni S. Rahajoe ◽  
Takashi Kohyama

Abstract:The relationship between leaf longevity and other leaf traits was compared among different life-form categories (trees, herbs, climbers and epiphytes) of 101 plant species in a tropical montane forest on Mt. Halimun, West Java, Indonesia. We applied the Cox proportional hazards regression to estimate the leaf longevity of each species from 30 mo of census data. We examined whether estimated longevity was explained by either species life-form categories, taxonomic groupings (eudicots, monocots, magnoliids and chloranthales, and ferns) or such leaf traits as leaf area, leaf mass per area (LMA), mass-based leaf nitrogen, penetrometer reading, condensed-tannin-free total phenolics and condensed tannin. There was a wide-ranged interspecific variation in leaf longevity, mostly 10–50 mo, similarly across life-form categories. LMA showed a strong positive influence on leaf longevity. We found that relationships between leaf longevity and some leaf traits were different among various life forms. Trees tended to have high LMA, while climbers tended to have low LMA at the same leaf longevity. We hypothesize that such difference among life forms reflects shoot architecture characteristics. Multi-shoot trees with branching architecture need to have self-supporting leaves, whereas semi-epiphytic climbers can maintain relatively low biomass investment to leaves hanging or relying upon the mechanical support from host plants.


Author(s):  
Pavlova N.R. ◽  
Dzerkal V.M. ◽  
Ponomareva А.А.

In order to preserve, reproduce and effectively use the natural complexes and objects of the DniproDelta as one of the most valuable natural floodplain-littoral complexes in Europe, which have special environmental, recreational, historical and cultural, scientific, educational and aesthetic value, and ensurethe conservationof «DniproDelta»wetland of theinternational importance,the National Natural Park «Lower Dnipro»was created(Decree of the President of Ukraine of November 24, 2015 No 657/2015).The flora of the higher vascular plants of the Park contains 820 species, 40 species of which (4.9% of the total number) are woody plants. Rosaceae Juss. (14 species), Salicaceae Mirb. (7 species), Aceraceae Juss. (3 types) are leading families of the dendroflora of the Park.Biomorphological characteristics of tree plant species in the flora of the Lower Dnipro National Nature Park were carried out according to the following classifications: 1) K. Raunkiersystem of plant life forms; 2) ecological and morphological classification of life forms of I. G. Serebryakov; 3) architectural models of F. Alle, R. Oldeman and P. Tomlinson; 4) classification of the life forms of plants of the temperate zone, which takes into account the vegetative propagation by O. V. Smirnova, L. B. Zaugolnova.AnalysisoftypesofbiomorphsaccordingtotheclassificationofK. Raunkiershowedthatthevastmajorityofdendrofloraspeciesbelongtophanerophytes, amongthem, dependingontheheightoftheplant, therearedifferentgroups-megaphanerophytes(e.g., Populustremula), mesophanerophytes(Salixalba), microphaneorphytes, nanophanerophytes(Amygdalusnana) andhamephytes(Ephedradistachia).According to the ecological and morphological classification of I. G. Serebryakov life forms, the flora of the Park is dominated by forest-steppe trees and forest-type trees.The trees which belong to one life form often differ in the principles of growth and formation of the crown, branching, and general habitus, which is generally considered as an architectural model of a particular species. According to the classification of architectural models by F. Alle, R. Oldeman and P. Tomlinson, in the flora of the Park, there are five models among which the species formed by the model of Tomlinson have a significant representation, and the species formed by the models of Manzheno and Champagne have a smaller representation.Key words:flora, tree, classification, life form, bush. З метою збереження, відтворення і ефективного використання природних комплексів та об’єктів дельти річки Дніпро як одного з найцінніших природних заплавно-літоральних комплексів у Європі, які мають особливу природоохоронну, оздоровчу, історико-культурну, наукову, освітню та естетичну цінність, забезпечення збереження водно-болотного угіддя міжнародного значення «Дельта р. Дніпро» створено Національний природний парк «Нижньодніпровський» (Указ президента України від 24 листопада 2015 року No 657/2015).Флора вищих судинних рослин Парку попередньо складає 820 видів, з них 40 видів (4,9% від загальної кількості) –деревні рослини.Провідні родини дендрофлори Парку –Rosaceae Juss. (14 видів), SalicaceaeMirb. (7 видів), AceraceaeJuss. (3 види). Біоморфологічну характеристику видів деревних рослин у флорі національного природнього парку «Нижньодніпровський» проведено за класифікаціями: 1) система життєвих форм рослин К. Раункієра; 2) еколого-морфологічна класифікація життєвих форм І. Г. Сєрєбрякова; 3) архітектурні моделі Ф. Аллє, Р. Ольдемана і П. Томлінсона; 4)класифікація життєвих форм рослин помірної зони, яка враховує вегетативне розмноження О. В. Смирнової, Л. Б. Заугольнової.Аналіз типів біоморф за класифікацією К. Раункієра показав, що переважна більшість видів дендрофлори належить до фанерофітів, серед них, в залежності від висоти рослини, виділяють різні групи –мегафанерофіти (наприклад, Populus tremula), мезофанерофіти (Salix alba), мікрофанерофіти (Amorpha fruticosa), нанофанерофіти (Amygdalus nana) та хамефіти (Ephedra distachia).За еколого-морфологічною класифікацією життєвих форм І. Г. Сєрєбрякова у флорі Парку домінують дерева лісостепового типу та дерева лісового типу.Дерева, які відносяться до однієї життєвої форми, часто відрізняютьсяпринципами наростання та формування крони, галуженням, загальним габітусом, що загалом розглядається як архітектурна модель конкретного виду. За класифікацією архітектурних моделей Ф.Аллє, Р. Ольдемана і П. Томлінсона у флорі Парку виділено п’ять моделей, серед яких, значне представництво мають види, що формуються за моделлю Томлінсона, менше представництво мають види, що формуються за моделями Манжено та Шампанії.Ключові слова: флора, дерево, класифікація, життєва форма, кущ.


2004 ◽  
Vol 64 (2) ◽  
pp. 201-209 ◽  
Author(s):  
M. A. Batalha ◽  
F. R. Martins

We used Raunkiaer's system to classify in life-forms the vascular plants present in 12 random 25 m² quadrats of a cerrado site. The study area is covered by cerrado sensu stricto and is located in the Valério fragment, at about 22º13'S and 47º51'W, 760 m above sea level, in the Itirapina Ecological and Experimental Station, São Paulo State, southeastern Brazil. The floristic spectrum considers the life-form of each species, while in the frequency spectrum, each species is weighted by its frequency. The vegetation spectrum does not consider the species at all, but only the individuals in each life-form class. In the floristic spectrum, the most represented life-forms were the phanerophytes and the hemicryptophytes, as in other cerrado sites. This spectrum differed significantly from Raunkiaer's normal spectrum, mainly due to under-representation of therophytes and over-representation of phanerophytes. The floristic and frequency spectra were similar, but both differed from the vegetation spectrum. We recommend the floristic spectrum when working at larger scales and a description of the phytoclimate is wanted. The vegetation spectrum is preferable when working at smaller scales and wanting a quantitative description of the physiognomy. The frequency spectrum is not recommended at all.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthias Borgstede ◽  
Marcel Scholz

In this paper, we provide a re-interpretation of qualitative and quantitative modeling from a representationalist perspective. In this view, both approaches attempt to construct abstract representations of empirical relational structures. Whereas quantitative research uses variable-based models that abstract from individual cases, qualitative research favors case-based models that abstract from individual characteristics. Variable-based models are usually stated in the form of quantified sentences (scientific laws). This syntactic structure implies that sentences about individual cases are derived using deductive reasoning. In contrast, case-based models are usually stated using context-dependent existential sentences (qualitative statements). This syntactic structure implies that sentences about other cases are justifiable by inductive reasoning. We apply this representationalist perspective to the problems of generalization and replication. Using the analytical framework of modal logic, we argue that the modes of reasoning are often not only applied to the context that has been studied empirically, but also on a between-contexts level. Consequently, quantitative researchers mostly adhere to a top-down strategy of generalization, whereas qualitative researchers usually follow a bottom-up strategy of generalization. Depending on which strategy is employed, the role of replication attempts is very different. In deductive reasoning, replication attempts serve as empirical tests of the underlying theory. Therefore, failed replications imply a faulty theory. From an inductive perspective, however, replication attempts serve to explore the scope of the theory. Consequently, failed replications do not question the theory per se, but help to shape its boundary conditions. We conclude that quantitative research may benefit from a bottom-up generalization strategy as it is employed in most qualitative research programs. Inductive reasoning forces us to think about the boundary conditions of our theories and provides a framework for generalization beyond statistical testing. In this perspective, failed replications are just as informative as successful replications, because they help to explore the scope of our theories.


2021 ◽  
Author(s):  
Genda Singh ◽  
Bilas Singh

Abstract Background: Plants adapt to adverse environmental conditions accumulate varying concentrations of carbon (C), nitrogen (N) and sulfur (S) compounds to cope up with adverse climatic conditions. Carbon, N and S concentrations were determined in roots, stem and leaves of 33 species of trees/shrubs with objectives to observe the effects of life-form and plants functional traits, and select species with high concentration of these elements for their utilization in afforestation and medicinal uses. Results: Concentrations of C, N, and S and C: N and N: S ratio varied (P<0.05) between species, organs, life-forms and functional traits (legume vs non-legume). These variables were higher (except C in roots and stem) in trees than shrubs, and in leguminous than non-leguminous species. Non-leguminous species showed high S content and low N: S ratio. Antagonistic and synergistic relations were observed between C and N, and N and S concentration respectively. Species showed varying potential in assimilating carbon by regulating uptake and accumulation of these elements in different organs making them adapt to the habitats affected by drought and salinity. We observed strong plant size/life-form effects on C and N content and C: N and N: S ratios and of function on S content. Conclusions: Life-form/size and varying functions of the species determined C: nutrient ratio and elemental composition and helped adapting varying environmental stresses. This study assist in selecting species of high carbon, nitrogen and S content to utilize them in afforesting the areas affected by water and salt stresses, increased carbon storage and species with high S/N content in medicinal uses.


2021 ◽  
Vol 10 (1) ◽  
pp. 351
Author(s):  
Mu'jizatin Fadiana ◽  
Yulaikah Yulaikah ◽  
Lajianto Lajianto

The ability to prove formal mathematics is an important ability that must be mastered by undergraduate prospective mathematics teachers. However, students who are prospective mathematics teachers have difficulty in constructing proof in mathematics courses. Therefore, this study aims to explore the tendency of mathematical proof methods for prospective mathematics teachers in second year lectures. The method used in this research is quantitative descriptive research. Participants in this study were 30 prospective mathematics teachers at a tertiary institution in Tuban, East Java. The research instrument is a simple task of compiling mathematical evidence. The results of the study were analyzed using the classification of types of proof by Miyazaki, namely classifying the types of deductive and inductive reasoning. The results showed that prospective mathematics teachers had a greater tendency to use deductive reasoning than using inductive reasoning. Type A proof is the most common type of proof. In addition, around 70% of prospective teachers still experience difficulties in compiling evidentiary tasks.


2018 ◽  
Vol 96 (1) ◽  
pp. 138 ◽  
Author(s):  
Tatiana Lobato-de Magalhães ◽  
Mahinda Martínez

<p><strong>Background: </strong>Mexico has a high diversity of aquatic and subaquatic plants that occur between 1,000 and 2,500 m of elevation, although a larger proportion of aquatic plants is concentrated at lower altitudes. Temporary wetlands harbor close to 73 % of the aquatic species in Mexico. These systems are under a strong anthropogenic pressure and suffer constant degradation.</p><p><strong>Questions:</strong> i) How many species grow in highland temporary wetlands? ii) Are they floristically similar? iii) Is there a latitudinal pattern of species richness?</p><p><strong>Studied groups: </strong>Charophyta, Pteridophyta, Angiosperms.</p><p><strong>Study site and years of study:</strong> Central Mexico (39 wetlands) from 2015 to 2016.<strong></strong></p><p><strong>Methods: </strong>We collected in 39 temporary wetlands for two years. We made a presence/absence list of species per locality, and calculated floristic similarities and correlations between wetlands. We include data characterizing life form, plant use, and conservation status.</p><p><strong>Results:</strong> We found 126 species belonging to 80 genera and 38 families. The richest families were Cyperaceae, Asteraceae, and Poaceae. As to genera, <em>Eleocharis</em>, <em>Cyperus</em>, and <em>Juncus </em>had more species. Species with the widest distributions were <em>Persicaria mexicana</em>, <em>Marsilea mollis</em>, <em>Luziola fluitans</em>, <em>Heteranthera peduncularis</em>, and <em>Nymphoides fallax</em>.  We found five different life forms – all herbaceous, including 27 threatened species, 24 species with economic use, 48 endemic species, and 19 cosmopolitan species. In addition, we found 20 species recorded for the first time in some states included in our study, and two species of <em>Eleocharis</em> that might represent undescribed species. The richest wetland harbors 40 species, the poorest has only five. Wetlands were comparable to each other in species composition, and species richness increases towards the south.</p><p><strong>Conclusions:</strong> Temporary wetlands harbor a high floristic diversity and are similar to each other. Lower latitudes host higher numbers of species.</p>


Sign in / Sign up

Export Citation Format

Share Document