scholarly journals Insecticidal, repellent, antimicrobial activity and phytotoxicity of essential oils: With special reference to limonene and its suitability for control of insect pests

2001 ◽  
Vol 10 (3) ◽  
pp. 243-259 ◽  
Author(s):  
M.A. IBRAHIM ◽  
P. KAINULAINEN ◽  
A. AFLATUNI

The interest in the use of monoterpenes for insect pest and pathogen control originates from the need for pesticide products with less negative environmental and health impacts than highly effective synthetic pesticides. The expanding literature on the possibility of the use of these monoterpenes is reviewed and focused on the effects of limonene on various bioorganisms. Limonene is used as insecticide to control ectoparasites of pet animals, but it has activity against many insects, mites, and microorganisms. Possible attractive effects of limonene to natural enemies of pests may offer novel applications to use natural compounds for manipulation of beneficial animals in organic agriculture. However, in few cases limonene-treated plants have become attractive to plant damaging insects and phytotoxic effects on cultivated plants have been observed. As a plant-based natural product limonene and other monoterpenes might have use in pest and weed control in organic agriculture after phytotoxicity on crop plants and, effects on non-target soil animals and natural enemies of pest have been investigated

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Shovon Chandra Sarkar ◽  
Endong Wang ◽  
Shengyong Wu ◽  
Zhongren Lei

Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. However, this additional consideration requires a more knowledge-intensive background to designing an effective trap cropping system. We have provided information based on different trap crops as companion plant, their functions and an updated list of trap cropping applications to attract insect pests and natural enemies that should be proven as helpful in future trap cropping endeavors.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 644
Author(s):  
Luis Cruces ◽  
Eduardo de la Peña ◽  
Patrick De Clercq

Over the last decade, the sown area of quinoa (Chenopodium quinoa Willd.) has been increasingly expanding in Peru, and new production fields have emerged, stretching from the Andes to coastal areas. The fields at low altitudes have the potential to produce higher yields than those in the highlands. This study investigated the occurrence of insect pests and the natural enemies of quinoa in a traditional production zone, San Lorenzo (in the Andes), and in two new zones at lower altitudes, La Molina (on the coast) and Majes (in the “Maritime Yunga” ecoregion), by plant sampling and pitfall trapping. Our data indicated that the pest pressure in quinoa was higher at lower elevations than in the highlands. The major insect pest infesting quinoa at high densities in San Lorenzo was Eurysacca melanocampta; in La Molina, the major pests were E. melanocampta, Macrosiphum euphorbiae and Liriomyza huidobrensis; and in Majes, Frankliniella occidentalis was the most abundant pest. The natural enemy complex played an important role in controlling M. euphorbiae and L. huidobrensis by preventing pest resurgence. The findings of this study may assist quinoa producers (from the Andes and from regions at lower altitudes) in establishing better farming practices in the framework of integrated pest management.


2020 ◽  
Vol 32 (5) ◽  
pp. 1026-1032
Author(s):  
N.H. Albariman ◽  
S.F. Sabran ◽  
N.W. Othman ◽  
N. Ishak ◽  
A.S. Dheyab ◽  
...  

Crops are being damaged by several plant pests. Several strategies have been developed to restrict the damage of cultivated plants by using synthetic pesticides and repellants. However, the use to control these insects is highly discouraged because of their risks on humans. Therefore, several alternatives have been developed from plant extracts to protect crops from plant pests. Accordingly, this review focuses on outlining the insecticidal and repellant activities of Southeast Asia plants towards insect pests. Several extracts of plants from Southeast Asia were investigated to explore their insecticidal and repellant activities. Azadiracha indica (neem) and Piper species were highly considered for their insecticidal and repellant activities compared to other plants. This review also addressed the investigation on extracts of other plant species that were reported to exert insecticidal and repellant activities. Most of the conducted studies have been still in the primarily stage of investigation, lacking a focus on the insecticidal and repellant spectrum and the identification of the active constituents which are responsible for the insecticidal and repellant activity.


1927 ◽  
Vol 18 (1) ◽  
pp. 13-16 ◽  
Author(s):  
W. R. Thompson

The importation of parasites from the native home of introduced insect pests now constitutes a recognised part of entomological practice in most countries under civilised control. However, since the method is still in the experimental stage, and since long periods of time often elapse before the parasites colonised become sufficiently abundant to exert any appreciable influence on the host, the entomologist often finds it necessary, in order to avert disaster, to utilise remedies which, though temporary, are more immediately effective. To this end he employs some one or other of the various methods of mechanical control, by which the population of the insect pest can be at once greatly reduced.But in many cases, these methods of attack affect the parasites as well as the hosts. It is therefore important to consider what influence they will have upon the progress of the natural enemies and whether, in order to obtain the temporary relief afforded by mechanical methods, we are not sacrificing the hope of permanent control.We have at present no data permitting us to attack this problem from the experimental angle ; but it can be studied in a broad general way when reduced to mathematical terms.


2020 ◽  
Vol 46 (3) ◽  
pp. 8301-8317
Author(s):  
Sanae BENANI ◽  
Aziz BOUCHELTA ◽  
Sanae AMINE

Using pesticides is the first method to control diseases and kill pests and weeds, which are the most menacing and the biggest problem facing agriculture. It is commonly used by developing since it is the solution to increase yields and solve agriculture problems. A part from big farmers, the majority of peasant farmers are unable to pay for synthetic pesticides because of their high price. Moreover, the small fields cultivated by subsistence farmers making the use of such pesticides uneconomic. In morocco, peasant farmers use even pesticides, which are over dose or they use non-certified products. It is understood that it is very harmful for human health and environment as well. Therefore, pesticide plants do not eliminate all pests, but keep their populations under the threshold of harm, and have more advantages than synthetic pesticides. Moreover, pesticide plant extracts decompose rapidly in the environment; which limits the risk of environmental pollution and improves the sanitary quality of cultivated products; also, it controls insect pests by protecting their natural enemies rather than by spraying crops with synthetic pesticides. The aim of this study is to record all products used by farmers to control Bruchus rufimanus especially the use of bio pesticides around Meknes city (Mejjat and Sebet jahjouhe area). It was established that most of big peasant farmers use synthetic pesticides. While small farmers have only access to traditional methods such as Capsicum frutescent, Urtica dioica, salt and ash wood, if not using non-certified products among which rodenticides.


1991 ◽  
Vol 67 (5) ◽  
pp. 500-505 ◽  
Author(s):  
V. G. Nealis

Forest insect pest management differs from pest management in other renewable-resource industries because of the relative complexity and stability of the forest environment. An important component of this complexity is the rich fauna of natural enemies attacking most forest insect pests. Understanding the relationship between forest insect pests and their natural enemies would permit better insight into the dynamics of pest populations.The active release of natural enemies in inoculative or inundative release strategies is a direct application of biological control to pest management. The conservation of resident natural enemies is an indirect biological control method with great potential. Knowledge of the ecology of natural enemies can be used to modify other forest practices such as reforestation and insecticide use to conserve or enhance the action of natural enemies.


2008 ◽  
Vol 48 (12) ◽  
pp. 1531 ◽  
Author(s):  
Joanne C. Holloway ◽  
Michael J. Furlong ◽  
Philip I. Bowden

Beneficial invertebrates (predators and parasitoids) can make significant contributions to the suppression of insect pest populations in many cropping systems. In Australia, natural enemies are incorporated into integrated pest management programs in cotton and horticultural agroecosystems. They are also often key components of effective programs for the management of insect pests of grain crops in other parts of the world. However, few studies have examined the contribution of endemic natural enemies to insect pest suppression in the diverse grain agroecosystems of Australia. The potential of these organisms is assessed by reviewing the role that natural enemies play in the suppression of the major pests of Australian grain crops when they occur in overseas grain systems or other local agroecosystems. The principal methods by which the efficacy of biological control agents may be enhanced are examined and possible methods to determine the impact of natural enemies on key insect pest species are described. The financial and environmental benefits of practices that encourage the establishment and improve the efficacy of natural enemies are considered and the constraints to adoption of these practices by the Australian grains industry are discussed.


1977 ◽  
Vol 28 (2) ◽  
pp. 319 ◽  
Author(s):  
GO Furness

Chemical control of the mealybug Pseudococcus longispinus (Targioni-Tozzetti) was most effective if sprays were applied when the mealybugs were in the dispersive crawler stage and when the host plant afforded the least shelter. A two-spray program with sprays applied in August and late November effectively controlled a dense infestation of the mealybug on citrus. Red scale (Aonidiella aurantii (Maskell)), the major insect pest of citrus, was also effectively controlled. An overall pest management program has been developed for citrus in which all insect pests are controlled by combination of natural enemies and insecticides as required. Outbreaks of the mealybug, and other secondary pests, are controlled by sprays of aminocarb or methomyl. These two insecticides prevented the population resurgence of mealybugs in the subsequent generation which occurred when maldison was used. Bioassays showed that aminocarb and methomyl were toxic for less than a week to the mealybug and to parasites and predators, whereas maldison and methidathion were toxic to the parasites and predators for about a month. Parasite pupae inside the host mealybug survived sprays of maldison and aminocarb. It is suggested that natural enemies emerging after spraying, from resistant or protected stages, survive sprays of aminocarb and methomyl but not sprays of more persistent insecticides like maldison; and that these survivors continue to suppress populations of their hosts. Hence aminocarb and methomyl are probably specific in their action against the mealybug and the other secondary pests of citrus because of their short persistence.An insecticide check experiment failed to demonstrate that natural enemies significantly reduce populations of the mealybug. Possible reasons for the failure are discussed.


2016 ◽  
Vol 4 (1) ◽  
pp. 71-80
Author(s):  
A Awal ◽  
MM Rahman ◽  
MZ Alam ◽  
MMH Khan

Experiment was conducted during winter season to study the diversity and equitability of insect pest species and natural enemies in insecticide treated brinjal fields. Highest number of insect pests were recorded in` Tracer 45 SC, Bactoil (Bt), Nimbicidene 0.03 EC and lowest was in Necstar-50 EC and Proclaim-5 SG treated plots. The highest total abundance of insect pest was recorded in the plots treated with Bactoil and Tracer-45 SC and lowest total abundance was in Helicide (HNPV), Proclaim-5 SG and Booster-10 EC treated plots. The diversity index and equitability of insect pest species were highest in the plots treated with Nimbicidene 0.03 EC and Bactoil in visual search and sweep net methods while Bactoil and Booster 10 EC in pitfall trap method. However, lowest diversity index and equitability were obtained from the plots treated with Booster 10 EC, Proclaim-5 SG, Necstar-50 EC, Tracer-45 SC in visual search and sweep net methods but also in plots treated with Nimbicidene 0.03 EC in pitfall trap method. In case of natural enemies, the highest number of families were recorded in Tracer-45 SC, Nimbicidine 0.03 EC and Bactoil treated plots while lowest was in Helicide, Booster 10 EC, Proclaim-5 SG and Necstar-50 EC treated plots. The highest total abundance of natural enemy was recorded in the plot treated with Bactoil and Tracer-45 SC while lowest abundance was in the plot treated with Necstar-50 EC and Boster-10 EC. The diversity index and equitability of natural enemies were the highest in the plots treated with Proclaim-5 SG, Bactoil, Helicide and Necstar-50 EC in visual search, sweep net method and pitfall trap method while lowest was in Booster 10 EC, Tracer-45 SC treated plots in visual search method, Booster 10 EC and Nimbicidene 0.03 EC treated plots in sweep net method, Necstar-50 EC and Nimbicidene 0.03 EC treated plots in pitfall trap method. Bactoil and Tracer-45 SC were relatively safe for natural enemies and therefore would be fit well into integrated pest management (IPM) against BSFB of brinjal crop.Jahangirnagar University J. Biol. Sci. 4(1): 71-80, 2015 (June)


Author(s):  
Ukoroije, Rosemary Boate ◽  
Otayor, Richard Abalis

Bio-pesticides are biological derived agents that are usually applied in a manner similar to synthetic pesticides but achieve pest management in an environmental friendly way. Bioinsecticides have the advantages of been reportedly eco-friendly both to man and the environment, are target specific, lack problem of residue, least persistent in environment, locally available, easily processed and inexpensive, though with the limitation of requiring repeated applications for the achievement of optimal control of insect pests while enhancing crop protection. The mode of action of bioinsecticides on insects includes repellent action, antifeedant activity, oviposition deterrent properties, growth and development inhibition, toxicity, attractants, sterility and death. Hence, bioinsecticides can be included in integrated pest management programs for crop protection and insect pest control. The review on biopesticidal properties of some plant secondary metabolites in the leaves, stems, bark, fruits, flowers, cloves, rhizomes, grains and seeds of plants and their interference with the growth, feeding, reproduction of insect pestsfor pest management has been elaborated.


Sign in / Sign up

Export Citation Format

Share Document