scholarly journals CLT beam analysis using classical elastic theory of layered beams

2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Markku Heinisuo ◽  
Sami Pajunen

The classical elastic theory of layered beams is used for the analysis of cross laminated timber (CLT) beams. A brief introduction of the theory is given and followed by examples. The theory of layered beams offers a widely studied, well established method for the analysis the CLT beams including displacements and stresses of each layer of the beam. It is shown that the theoretical basis of the widely used Shear Analogy is the same as the theoretical basis of the theory of layered beams. The results are compared to test results and to results of the finite element calculations. It is seen that the deflections and strains are in 10 % fractals in mean in the considered cases. The theory of layered beams seems to be suitable method in the analysis of the CLT beams at the elastic phase.

Author(s):  
G Zboinski

The paper presents briefly the theoretical basis of linear and non-linear contact problems of linear elasticity as applied to the kinetostatic analysis of turbomachinery blade attachments. The physical and geometrical non-linearities of the problem are due to friction and unilateral constraints respectively. For three classes of contact problems finite element calculations of a real fir-tree turbine blade attachment with and without clearances within the contact surfaces are performed. The results for effective stresses of the root and disc hooks are thoroughly analysed and compared. Furthermore, the results for contact node status and nodal slips between the blade root and the disc sector are presented. The significance of the physical and geometrical non-linearities to the stress, displacement and contact states of the attachment is then discussed.


2007 ◽  
Vol 35 (4) ◽  
pp. 276-299 ◽  
Author(s):  
J. C. Cho ◽  
B. C. Jung

Abstract Tread pattern wear is predicted by using an explicit finite element model (FEM) and compared with the indoor drum test results under a set of actual driving conditions. One pattern is used to determine the wear rate equation, which is composed of slip velocity and tangential stress under a single driving condition. Two other patterns with the same size (225/45ZR17) and profile are used to be simulated and compared with the indoor wear test results under the actual driving conditions. As a study on the rubber wear rate equation, trial wear rates are assumed by several constitutive equations and each trial wear rate is integrated along time to yield the total accumulated wear under a selected single cornering condition. The trial constitutive equations are defined by independently varying each exponent of slip velocity and tangential stress. The integrated results are compared with the indoor test results, and the best matching constitutive equation for wear is selected for the following wear simulation of two other patterns under actual driving conditions. Tens of thousands of driving conditions of a tire are categorized into a small number of simplified conditions by a suggested simplification procedure which considers the driving condition frequency and weighting function. Both of these simplified conditions and the original actual conditions are tested on the indoor drum test machines. The two results can be regarded to be in good agreement if the deviation that exists in the data is mainly due to the difference in the test velocity. Therefore, the simplification procedure is justified. By applying the selected wear rate equation and the simplified driving conditions to the explicit FEM simulation, the simulated wear results for the two patterns show good match with the actual indoor wear results.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2978
Author(s):  
Zhi-Min Liu ◽  
Xue-Jin Huo ◽  
Guang-Ming Wang ◽  
Wen-Yu Ji

Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2011 ◽  
Vol 243-249 ◽  
pp. 1528-1535
Author(s):  
Yu Zhao ◽  
Yong Jun Zhou ◽  
Jing Sun ◽  
Jin Tao Tang ◽  
Xu Li

Cable-stayed self-anchored suspension composed bridges have novel structures and aesthetic appearance with complex system and difficulty for design and construction. In order to acquire a better knowledge of the load-carrying capability of this type of bridges, based on a real bridge and the theory of abnormal similarity, a full-bridge scaled down(1:20) test model was built to simulate the whole process of construction. The test results were preferably fit the theoretical calculation value. It can be seen that the design of the bridge was reasonable, and the accuracy of the calculation of finite element model was verified at the same time. The test and the related results can be used as the reference for the test and design of the similar bridges.


Sign in / Sign up

Export Citation Format

Share Document