scholarly journals Prevalence and molecular characterization of Beta-lactamase resistance gene in multidrug resistance bacteria, Proteus spp.

Author(s):  
Sabiha S. Salih ◽  
Shno J. Mohammed ◽  
Imad M Noori ◽  
Lana MA Mohammed ◽  
Taib A. Hama Soor

Existing of drug resistance bacteria in meat is a series of health concern and beta-lactamase is responsible to generate multi drug resistances in bacteria. Meat is a source of delivering food born pathogen bacteria including Proteus species. Recently Proteus bacteria developed drug resistance against many antimicrobial drugs and it causes difficulty in patient’s treatment. Hence its important to indicate the rate of Proteus species, P. mirabilis and P. Vulgaris, in the meat of different animals and to find the prevalence of b-lactamase resistance genes (blaTEM-1, blaCMY, blaCMY2, blaShv, blaOXA, and blaCTX) in Proteus species. Molecular identification of Proteus bacteria was confirmed by PCR amplification of part of 16S rRNA using Proteus specific set of primers.  70 meat samples (cattle, sheep, chicken, turkey, goat, and fish) were collected in local meat shops in the center of Sulaimani city. 29 (41.4%) samples were positive to Proteus species and 22 (75.87%) isolates were P. mirabilis and seven (24.13%) were P. vulgaris based on conventional biochemical tests. The drug sensitivity test was performed for all isolates using a disk diffusion assay (Kirby Bauer test). The multidrug resistance was found in all isolates and the most common drug resistance phenotype were against tetracycline, rifampin, and doxycycline, while the imepenem, tobramycin, and meropenem remain more effective against the bacteria. Resistance genes, blaTEM-1, and blaShv were found in five isolates (17.2%) of Proteus.   Three isolates (10.3%) were positive to blaTEM-1 resistance gene and two isolates (6.8%) were positive to blaShv. All resistance genes recorded in this study were recovered in P. mirabilis and none of them was reported in p. vulgaris. None of the isolates was positive to beta-lactamase genes, blaCMY, blaCMY2, blaOXA, and blaCTX.

2015 ◽  
Author(s):  
Anna E. Sheppard ◽  
Nicole Stoesser ◽  
Daniel J. Wilson ◽  
Robert Sebra ◽  
Andrew Kasarskis ◽  
...  

AbstractThe recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort in this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms including conjugation and transposition, however the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is currently unknown. Using a combination of short- and long-read whole genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolated from a single hospital over five years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of the blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this with the use of reference-based methods. We also demonstrate that as a consequence of the genetic mobility observed herein, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that non-clonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance.ImportanceIncreasing antibiotic resistance is a major threat to human health, as highlighted by the recent emergence of multi-drug resistant “superbugs”. Here, we tracked how one important multi-drug resistance gene spread in a single hospital over five years. This revealed high levels of resistance gene mobility to multiple bacterial species, which was facilitated by various different genetic mechanisms. The mobility occurred at multiple nested genetic levels, analogous to a Russian doll set where smaller dolls may be carried along inside larger dolls. Our results challenge traditional views that drug-resistance outbreaks are due to transmission of a single pathogenic strain. Instead, outbreaks can be “gene-based”, and we must therefore focus on tracking specific resistance genes and their context rather than only specific bacteria.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1961-1977
Author(s):  
Michelle A Graham ◽  
Laura Fredrick Marek ◽  
Randy C Shoemaker

Abstract PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar “Williams 82” [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca2+-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.


2015 ◽  
Vol 59 (11) ◽  
pp. 7113-7116 ◽  
Author(s):  
Hongbin Si ◽  
Wan-Jiang Zhang ◽  
Shengbo Chu ◽  
Xiu-Mei Wang ◽  
Lei Dai ◽  
...  

ABSTRACTA novel nonconjugative plasmid of 28,489 bp from a porcine linezolid-resistantEnterococcus faeciumisolate was completely sequenced. This plasmid harbored a novel type of multiresistance gene cluster that comprised the resistance geneslnu(B),lsa(E),spw,aadE,aphA3, and two copies oferm(B), which account for resistance to macrolides, lincosamides, streptogramins, pleuromutilins, streptomycin, spectinomycin, and kanamycin/neomycin. Structural comparisons suggested that this plasmid might have developed from other enterococcal plasmids by insertion element (IS)-mediated interplasmid recombination processes.


2011 ◽  
Vol 77 (5) ◽  
pp. 1601-1607 ◽  
Author(s):  
Eva Raphael ◽  
Lisa K. Wong ◽  
Lee W. Riley

ABSTRACTA substantial proportion of infections caused by drug-resistant Gram-negative bacteria (GNB) in community and health care settings are recognized to be caused by evolutionarily related GNB strains. Their global spread has been suggested to occur due to human activities, such as food trade and travel. These multidrug-resistant GNB pathogens often harbor mobile drug resistance genes that are highly conserved in their sequences. Because they appear across different GNB species, these genes may have origins other than human pathogens. We hypothesized that saprophytes in common human food products may serve as a reservoir for such genes. Between July 2007 and April 2008, we examined 25 batches of prepackaged retail spinach for cultivatable GNB population structure by 16S rRNA gene sequencing and for antimicrobial drug susceptibility testing and the presence of extended-spectrum beta-lactamase (ESBL) genes. We found 20 recognized GNB species among 165 (71%) of 231 randomly selected colonies cultured from spinach. Twelve strains suspected to express ESBLs based on resistance to cefotaxime and ceftazidime were further examined forblaCTX-MandblaTEMgenes. We found a 712-bp sequence inPseudomonas teessideathat was 100% identical to positions 10 to 722 of an 876-bpblaCTX-M-15gene of anE. colistrain. Additionally, we identified newly recognized ESBLblaRAHN-2sequences fromRahnella aquatilis. These observations demonstrate that saprophytes in common fresh produce can harbor drug resistance genes that are also found in internationally circulating strains of GNB pathogens; such a source may thus serve as a reservoir for drug resistance genes that ultimately enter pathogens to affect human health.


Parasitology ◽  
1993 ◽  
Vol 106 (2) ◽  
pp. 107-115 ◽  
Author(s):  
R. M. Ekong ◽  
K. J. H. Robson ◽  
D. A. Baker ◽  
D. C. Warhurst

SUMMARYHomologues of the mammalian multidrug resistance gene have been identified in isolates and clones of Plasmodium falciparum and designated pfmdr1 and pfmdr2. Mutations in pfmdr1 have been associated with chloroquine resistance but confirmation could not be obtained in a genetic cross. We have examined the copy number and expression of pfmdr1 and pfmdr2 in chloroquine-sensitive and -resistant P. falciparum and have found no relationship between the copy number of either gene and chloroquine resistance. However, a marked correlation was seen between levels of mRNA transcribed for each gene and chloroquine resistance. Two transcripts of pfmdr1 were detected, and in the asexual blood cycle an 8 kb transcript appeared first, followed by the appearance of a 7 kb species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Feng Zhang ◽  
Shi Wu ◽  
Jiahui Huang ◽  
Runshi Yang ◽  
Jumei Zhang ◽  
...  

Antimicrobial resistance has become a major public health threat. Food-related Staphylococcus species have received much attention due to their multidrug resistance. The cfr gene associated with multidrug resistance has been consistently detected in food-derived Staphylococcus species. In this retrospective study, we examined the prevalence of cfr-positive Staphylococcus strains isolated from poultry meat in different geographical areas of China from 2011 to 2016. Two cfr-positive Staphylococcus delphini strains were identified from poultry meat in China. Comparative and whole-genome analyses were performed to characterize the genetic features and overall antimicrobial resistance genes in the two S. delphini isolates 245-1 and 2794-1. Whole-genome sequencing showed that they both harbored a novel 20,258-bp cfr-carrying Tn558 transposon derivative on their chromosomes. The Tn558 derivative harbors multiple antimicrobial resistance genes, including the transferable multiresistance gene cfr, chloramphenicol resistance gene fexA, aminoglycoside resistance genes aacA-aphD and aadD, and bleomycin resistance gene ble. Surprisingly, within the Tn558 derivative, an active unconventional circularizable structure containing various resistance genes and a copy of a direct repeat sequence was identified by two-step PCR. Furthermore, core genome phylogenetic analysis revealed that the cfr-positive S. delphini strains were most closely related to S. delphini 14S03313-1 isolated from Japan in 2017 and 14S03319-1 isolated from Switzerland in 2017. This study is the first report of S. delphini harboring a novel cfr-carrying Tn558 derivative isolated from retail food. This finding raises further concerns regarding the potential threat to food safety and public health safety. The occurrence and dissemination of similar cfr-carrying transposons from diverse Staphylococcus species need further surveillance.


2017 ◽  
Author(s):  
Annie N. Cowell ◽  
Eva S. Istvan ◽  
Amanda K. Lukens ◽  
Maria G. Gomez-Lorenzo ◽  
Manu Vanaerschot ◽  
...  

AbstractChemogenetic characterization through in vitro evolution combined with whole genome analysis is a powerful tool to discover novel antimalarial drug targets and identify drug resistance genes. Our comprehensive genome analysis of 262 Plasmodium falciparum parasites treated with 37 diverse compounds reveals how the parasite evolves to evade the action of small molecule growth inhibitors. This detailed data set revealed 159 gene amplifications and 148 nonsynonymous changes in 83 genes which developed during resistance acquisition. Using a new algorithm, we show that gene amplifications contribute to 1/3 of drug resistance acquisition events. In addition to confirming known multidrug resistance mechanisms, we discovered novel multidrug resistance genes. Furthermore, we identified promising new drug target-inhibitor pairs to advance the malaria elimination campaign, including: thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This deep exploration of the P. falciparum resistome and drug-able genome will guide future drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms of the deadliest malaria parasite.One Sentence SummaryWhole genome sequencing reveals how Plasmodium falciparum evolves resistance to diverse compounds and identifies new antimalarial drug targets.


2020 ◽  
Vol 20 (4) ◽  
pp. 543-549
Author(s):  
Zeinab Babaie ◽  
Somayeh Delfani ◽  
Faranak Rezaei ◽  
Fatemeh Norolahi ◽  
Somayeh Mahdian ◽  
...  

Background: Acinetobacter baumannii is an opportunistic pathogen, which causes a wide range of infections in hospitals, especially in intensive care units. Nowadays, due to the high resistance of Acinetobacter bumanni to antibiotics, this study, in addition to the phenotypic and genotypic investigations of drug resistance, focused on determining the molecular types of Acinetobacter baumannii isolated from patients in Khorramabad city by the pulsed-field gel electrophoresis (PFGE) method. Materials and Methods: In this cross-sectional study, 50 samples of Acinetobacter baumannii were collected from educational hospitals in Khorramabad city, Iran, from January to August 2015. They were identified in the laboratory using biochemical tests and culture methods. After determining the drug resistance pattern by the disc diffusion method and percentage of resistance genes to carbapenems, Acinetobacter baumannii isolates were analyzed using the PFGE method using the Apa1 enzyme. Results: The highest antibiotic resistance observed for Acinetobacter baumannii strains was against ampicillin-sulbactam (100%) and aztreonam (98%). The highest sensitivity was to polymixin B (100%) and colistin (94%), and also to the OXA-51-like gene present in all samples. The OXA-23-like gene was positive in 44 (88%) samples. PFGE results showed that Acinetobacterbaumannii strains had 33 different pulsotype patterns, of which 27 patterns had more than one strain and 23 had only one strain. Conclusion: Due to the high resistance of Acinetobacter baumannii and its ease of spread and its ability to transfer resistance genes, resistance control methods should be used in the disinfection of hospital areas. Hospital staff should observe hygiene standards and there should also be a reduction in antibiotic use.


Sign in / Sign up

Export Citation Format

Share Document