scholarly journals Fractographic Analysis of GTAW Robotic Welded Joints Fractured under Stress in Experimental HSLA Cr-Ni Steel

2021 ◽  
Vol 6 (7) ◽  
pp. 42-47
Author(s):  
Leyva L. Orión ◽  
Rosel P. Graciela ◽  
Gámez-C. Hugo

The welding current (A), arc voltage (V) preheating (°C), travel speed (mm·min-1) and net heat input (Qnet) were evaluated, on the strength and morphology of the fracture in experimental HSLA Cr-Ni steel welded joints, with commercial (ERS70S-6) filler metal and robotic GTAW technique. The samples were characterized by uniaxial stress tests, stereoscopy and Digital Image Processing (DIP). The results showed that the resistance to fracture of the experimental steel was exceeded by 18.39% by applying Qnet 0.520 (kJ·mm-1) and the combination of: 200 A, 12.7 V, 25 °C and 180 mm min-1, which influenced the ductile fracture morphology and topology. While the low Qnet (0.200-0.208 kJ·mm-1) favors instantaneous deformation of the welded joints with fracture in the weld bead as the major defect.

2021 ◽  
Vol 13 (10) ◽  
pp. 5675
Author(s):  
Josip Brnic ◽  
Marino Brcic ◽  
Sebastian Balos ◽  
Goran Vukelic ◽  
Sanjin Krscanski ◽  
...  

Knowledge of the properties and behavior of materials under certain working conditions is the basis for the selection of the proper material for the design of a new structure. This paper deals with experimental investigations of the mechanical properties of unalloyed high quality steel S235JRC + C (1.0122) and its behavior under conditions of high temperatures, creep and mechanical fatigue. The response of the material at high temperatures (20–700 °C) is shown in the form of engineering stress-strain diagrams while that at creep behavior (400–600 °C) is shown in the form of creep curves. Furthermore, based on uniaxial fully reversed mechanical fatigue tests (R=−1), a stress-life (S-N) fatigue diagram has been constructed and the fatigue (endurance) limit of the material is calculated The experimentally determined value of tensile strength at room temperature is 534 MPa. The calculated value of the fatigue limit, also at room temperature, using the modified staircase method and based on the mechanical fatigue tests data, is 202 MPa. With regard to creep resistance, steel 1.0122 can be considered creep-resistant only at a temperature of 400 °C and at an applied stress not exceeding 50% of the yield strength corresponding to this temperature.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


2013 ◽  
Vol 860-863 ◽  
pp. 967-971
Author(s):  
Xue Ping Mao ◽  
Xiao Wang ◽  
Sai Dong Huang ◽  
Chao Li ◽  
Hong Xu ◽  
...  

The high temperature creep tests of standard specimen and double U-type notch specimen of T92 steel were carried out under different stresses at 650 °C. Then optical microscopy and scanning electron microscopy were used to observe the fracture morphology and microstructure. The results show that the multiaxial stress state leads to the creep fracture cracking initiation in notch. Under multiaxial stress state, the failure mode of T92 steel is transgranular and dimple plastic fracture, and is more obvious with the increase of creep life. Compared with under uniaxial stress state, the precipitates under multiaxial stress state are larger in size and quantity, and are much coarser.


2018 ◽  
Vol 18 (1) ◽  
pp. 37-47 ◽  
Author(s):  
K. Pańcikiewicz

AbstractGas Tungsten Arc butt welded joints of tubes of 7CrMoVTiB10-10 made using bainitic-martensitic P 24-IG filler metal were found to be susceptible to root cracking. This was avoided by using the CMS-IG filler metal and austenitic EPRI P87 filler metal. Detailed coefficient of thermal expansion analysis for both filler metals was performed. Unfortunately, CMS-IG filler metal is characterized by a lower creep rupture strength than P 24-IG. For this reason, the joints were produced by the 141 method with using two filler metals: P 24- IG and EPRI P87. All the welded joints was characterized by the B quality level. Macrostructural, microstructural and hardness data for both welded joints are presented. The standard requirement, < 350 HV10, was marginally not met and was achieved through post weld heat treatment.


2020 ◽  
Vol 994 ◽  
pp. 36-43
Author(s):  
Ján Urminský ◽  
Milan Marônek ◽  
Jozef Bárta ◽  
Michaela Lopatková ◽  
Róbert Hrušecký

The electron beam welding (EBW) parameters have significant influence on weld surface appearance and porosity formation. Besides basic welding parameters, such as acceleration voltage, welding current, focusing current and welding speed, the beam oscillation during EBW plays an important role in weld metal formation and directly impacts the final welded joints properties. The influence of technological movements during EBW on the properties of aluminium-lithium alloy welded joints was studied. The same frequency and different amplitude as well as same amplitude and different frequency were chosen. The other welding parameters were constant.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1470
Author(s):  
Dechao Qiu ◽  
Zeng Gao ◽  
Xianli Ba ◽  
Zhenjiang Wang ◽  
Jitai Niu

The joining methods of Aluminum matrix composites reinforced with SiC particles (SiCp/Al MMCs) are a challenge during the manufacturing process due to the significant differences between SiC particles and base aluminum in terms of both physical and chemical properties. Micro-nano brazing filler metal Al-17.0Cu-8.0Mg fabricated by melt-spinning technology was employed to deal with the joining problem of 55 vol.% SiCp/ZL102 composites in this work. The result indicated that the foil-like brazing filler metal contained uniformed cellular nano grains, with a size less than 200 nm. The solidus and liquidus temperatures of the foil-like brazing filler metal decreased by 4 °C and 7 °C in comparison with the values of the as-cast brazing filler metal due to the nanometer size effect. The maximum joint shear strength of 98.17 MPa achieved with a brazing temperature of 580 °C and holding time of 30 min was applied in vacuum brazing process. The width of the brazing seam became narrower and narrower with increasing brazing temperature owning to the strong interaction between the micro-nano brazing filler metal and 55 vol.% SiCp/ZL102 composites. The fracture morphology of the joint made at a brazing temperature of 580 °C was characterized by quasi-cleavage fracture. After brazing, the chemical concentration gradient between the brazing filler metal and base material disappeared.


2019 ◽  
Vol 269 ◽  
pp. 04004
Author(s):  
Fuad Mahfudianto ◽  
Eakkachai Warinsiriruk ◽  
Sutep Joy-A-Ka

A method for optimizing monitoring by using Artificial Neural Network (ANN) technique was proposed based on instability of arc voltage signal and welding current signal of solid wire electrode (GMAW). This technique is not only for effective process modeling, but also to illustrate the correlation between the input and output parameters responses. The algorithms of monitoring were developed in time domain by carrying out the Moving Average (M.A) and Root Mean Square (RMS) based on the welding experiment parameters such as travel speed, thickness of specimen, feeding speed, and wire electrode diameter to detect and estimate with a satisfactory sample size. Experiment data was divided into three subsets: train (70%), validation (15%), and test (15%). Error back-propagation of Levenberg-Marquardt algorithm was used to train for this algorithm. The proposed algorithms on this paper were used to estimate the variety the Contact Tip to Work Distance (CTWD) through Mean Square Error (MSE). Based on the results, the algorithms have shown that be able to detect changes in CTWD automatically and real time with takes 0.147 seconds (MSE 0.0087).


2017 ◽  
Vol 728 ◽  
pp. 60-65
Author(s):  
Thanaporn Thonondaeng ◽  
Ghit Laungsopapun ◽  
Kittichai Fakpan ◽  
Krittee Eidhed

Single pass overlay welding of the ERNiCu-7 filler metal on the commercial pure titanium grade 2 and the 304 stainless steel using the gas tungsten arc welding (GTAW) process was studied. The ERNiCu-7 filler metal was overlay welded on the base metals with varying welding currents; it was 30A, 40A and 50A for the CP-Ti base metal and 50A, 60A and 70A for the 304SS base metal. The experimental results showed that the overlay CP-Ti welded-specimen, increasing of welding current increased bead width and decreased depth of penetration of weldment. While for the 304SS welded-specimen, increasing of welding current increased both bead width and depth of penetration. Suitable heat inputs to achieve good geometry of weldment for overlay welding were 348J/mm for CP-Ti welded-specimen and 558J/mm for 304SS welded-specimen.


1990 ◽  
Vol 112 (1) ◽  
pp. 52-55 ◽  
Author(s):  
A. Gilat ◽  
J. Tsai

An application of the unified elastic-viscoplastic constitutive theory of Bodner [5] is presented. The material parameters in the theory, which includes directional hardening, are determined from results of uniaxial stress tests at constant strain rates. The constitutive equations are then used in numerical modeling of pressure-shear plate impact experiment. The results show that the measured normal component of the wave agrees well with the calculated profile. A small discrepancy, which can be accounted for by the presence of a Bauschinger effect, exists between the theoretical and the experimental shear component of the wave profiles.


Sign in / Sign up

Export Citation Format

Share Document