scholarly journals 3D-Simulation Data-Making Trial to present and analyze Small-sized Farmlands Fields with Car-shaped Robot, ROS2, SLAM and Foxy for Real agricultural workers

Author(s):  
Shinji Kawakura ◽  
Ryosuke Shibasaki

In this study, we create various application systems focusing on agricultural (agri-) field data digitalization issues that will benefit traditional agri-researchers, workers, and their respective managers. We obtain three-dimensional (3D) information on agri-environments (e.g., rice fields, farmlands) via roaming robots with sensors. Robot-controlled middleware, such as robot operating systems (ROS), are often used for such robots. Thus, we selected car-shaped robot (NANO-RT1), ROS2, and the SLAM-based system. The car-shaped robot-based system operates sensor units uniformly. With this technology, we can recognize our location at an unknown place, and the robot can run. There are challenges in accurately presenting quantitative accuracy data for this type of study. We address this by providing average and standard deviation (SD) data for certain situations using five algorithms: (1) Hector-SLAM, (2) G-mapping, (3) Karto-SLAM, (4) Core-SLAM, and (5) Lago-SLAM. We believe the proposed holistic system has the potential to improve not only agri-businesses, but also agri-skills and overall security levels.

2020 ◽  
Author(s):  
Cut Nabilah Damni

AbstrakSoftware komputer atau perangkat lunak komputer merupakan kumpulan instruksi (program atau prosedur) untuk dapat melaksanakan pekerjaan secara otomatis dengan cara mengolah atau memproses kumpulan intruksi (data) yang diberikan. (Yahfizham, 2019 : 19) Sebagian besar dari software komputer dibuat oleh (programmer) dengan menggunakan bahasa pemprograman. Orang yang membuat bahasa pemprograman menuliskan perintah dalam bahasa pemprograman seperti layaknya bahasa yang digunakan oleh orang pada umumnya dalam melakukan perbincangan. Perintah-perintah tersebut dinamakan (source code). Program komputer lainnya dinamakan (compiler) yang digunakan pada (source code) dan kemudian mengubah perintah tersebut kedalam bahasa yang dimengerti oleh komputer lalu hasilnya dinamakan program executable (EXE). Pada dasarnya, komputer selalu memiliki perangkat lunak komputer atau software yang terdiri dari sistem operasi, sistem aplikasi dan bahasa pemograman.AbstractComputer software or computer software is a collection of instructions (programs or procedures) to be able to carry out work automatically by processing or processing the collection of instructions (data) provided. (Yahfizham, 2019: 19) Most of the computer software is made by (programmers) using the programming language. People who make programming languages write commands in the programming language like the language used by people in general in conducting conversation. The commands are called (source code). Other computer programs called (compilers) are used in (source code) and then change the command into a language understood by the computer and the results are called executable programs (EXE). Basically, computers always have computer software or software consisting of operating systems, application systems and programming languages.


Author(s):  
Halit Dogan ◽  
Md Mahbub Alam ◽  
Navid Asadizanjani ◽  
Sina Shahbazmohamadi ◽  
Domenic Forte ◽  
...  

Abstract X-ray tomography is a promising technique that can provide micron level, internal structure, and three dimensional (3D) information of an integrated circuit (IC) component without the need for serial sectioning or decapsulation. This is especially useful for counterfeit IC detection as demonstrated by recent work. Although the components remain physically intact during tomography, the effect of radiation on the electrical functionality is not yet fully investigated. In this paper we analyze the impact of X-ray tomography on the reliability of ICs with different fabrication technologies. We perform a 3D imaging using an advanced X-ray machine on Intel flash memories, Macronix flash memories, Xilinx Spartan 3 and Spartan 6 FPGAs. Electrical functionalities are then tested in a systematic procedure after each round of tomography to estimate the impact of X-ray on Flash erase time, read margin, and program operation, and the frequencies of ring oscillators in the FPGAs. A major finding is that erase times for flash memories of older technology are significantly degraded when exposed to tomography, eventually resulting in failure. However, the flash and Xilinx FPGAs of newer technologies seem less sensitive to tomography, as only minor degradations are observed. Further, we did not identify permanent failures for any chips in the time needed to perform tomography for counterfeit detection (approximately 2 hours).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonas Albers ◽  
Angelika Svetlove ◽  
Justus Alves ◽  
Alexander Kraupner ◽  
Francesca di Lillo ◽  
...  

AbstractAlthough X-ray based 3D virtual histology is an emerging tool for the analysis of biological tissue, it falls short in terms of specificity when compared to conventional histology. Thus, the aim was to establish a novel approach that combines 3D information provided by microCT with high specificity that only (immuno-)histochemistry can offer. For this purpose, we developed a software frontend, which utilises an elastic transformation technique to accurately co-register various histological and immunohistochemical stainings with free propagation phase contrast synchrotron radiation microCT. We demonstrate that the precision of the overlay of both imaging modalities is significantly improved by performing our elastic registration workflow, as evidenced by calculation of the displacement index. To illustrate the need for an elastic co-registration approach we examined specimens from a mouse model of breast cancer with injected metal-based nanoparticles. Using the elastic transformation pipeline, we were able to co-localise the nanoparticles to specifically stained cells or tissue structures into their three-dimensional anatomical context. Additionally, we performed a semi-automated tissue structure and cell classification. This workflow provides new insights on histopathological analysis by combining CT specific three-dimensional information with cell/tissue specific information provided by classical histology.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Majid Panahi ◽  
Ramin Jamali ◽  
Vahideh Farzam Rad ◽  
Mojtaba Khorasani ◽  
Ahamd Darudi ◽  
...  

AbstractIn several phenomena in biology and industry, it is required to understand the comprehensive behavior of sedimenting micro-particles in fluids. Here, we use the numerical refocusing feature of digital holographic microscopy (DHM) to investigate the slippage effect on micro-particle sedimentation near a flat wall. DHM provides quantitative phase contrast and three-dimensional (3D) imaging in arbitrary time scales, which suggests it as an elegant approach to investigate various phenomena, including dynamic behavior of colloids. 3D information is obtained by post-processing of the recorded digital holograms. Through analysis of 3D trajectories and velocities of multiple sedimenting micro-particles, we show that proximity to flat walls of higher slip lengths causes faster sedimentation. The effect depends on the ratio of the particle size to (1) the slip length and (2) its distance to the wall. We corroborate our experimental findings by a theoretical model which considers both the proximity and the particle interaction to a wall of different hydrophobicity in the hydrodynamic forces.


2020 ◽  
Vol 12 (8) ◽  
pp. 1319
Author(s):  
Xiaofan Sun ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Liangjiang Zhou ◽  
Shuai Jiang

The Gaussian vertical backscatter (GVB) model has a pivotal role in describing the forest vertical structure more accurately, which is reflected by P-band polarimetric interferometric synthetic aperture radar (Pol-InSAR) with strong penetrability. The model uses a three-dimensional parameter space (forest height, Gaussian mean representing the strongest backscattered power elevation, and the corresponding standard deviation) to interpret the forest vertical structure. This paper establishes a two-dimensional GVB model by simplifying the three-dimensional one. Specifically, the two-dimensional GVB model includes the following three cases: the Gaussian mean is located at the bottom of the canopy, the Gaussian mean is located at the top of the canopy, as well as a constant volume profile. In the first two cases, only the forest height and the Gaussian standard deviation are variable. The above approximation operation generates a two-dimensional volume only coherence solution space on the complex plane. Based on the established two-dimensional GVB model, the three-baseline inversion is achieved without the null ground-to-volume ratio assumption. The proposed method improves the performance by 18.62% compared to the three-baseline Random Volume over Ground (RVoG) model inversion. In particular, in the area where the radar incidence angle is less than 0.6 rad, the proposed method improves the inversion accuracy by 34.71%. It suggests that the two-dimensional GVB model reduces the GVB model complexity while maintaining a strong description ability.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2011 ◽  
Vol 83 ◽  
pp. 280-284
Author(s):  
Ming Jiang ◽  
Shu Zhang ◽  
Xiao Yuan He

Fast-starts are brief, sudden accelerations used by fish during predator-prey encounters. In this paper, a three-dimensional (3D) test and analysis method is critical to understand the function of the pectoral fin during maneuvers. An experiment method based on Fourier Transform Profilometry for 3D pectoral fin profile variety during fish maneuvers is proposed. This method was used in a carp fast-start during prey. Projecting the moiré fringes onto a carp pectoral fin it will produce the deformed fringe patterns contain 3D information. A high speed camera captures these time-sequence images. By Fourier transform, filter, inverse Fourier transform and unwrap these phase maps in 3D phase space, the complex pectoral fin profile variety were really reconstructed. The present study provides a new method to quantify the analysis of kinetic characteristic of the pectoral fin during maneuvers.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Sign in / Sign up

Export Citation Format

Share Document