scholarly journals Analyzing the Turbulent Flow Characteristics by Utilizing k-ϵ Turbulence Model.

2017 ◽  
Vol 2 (11) ◽  
pp. 28
Author(s):  
Md. Safayet Hossain ◽  
Md. Ishtiaque Hossain ◽  
Somit Pramanik ◽  
Dr. Jamal Uddin Ahamed

This study attempts to illustrate the behavior of a fully developed turbulent flow by using k-ε turbulence model. A two dimensional smooth bend channel is adopted for this experiment and water was chosen as working fluid. The Reynolds number was gradually increased to predict the diversity in turbulent kinetic energy (TKE), turbulent dissipation rate, turbulent intensity and eddy viscosity. Primarily the flow has been solved by employing three distinct k-ϵ turbulence models namely, Standard, Renormalization-group (RNG) and Realizable model. After experimenting with ten different sample (from 74E03 to 298E03) of Reynolds numbers, each of these analyses explicitly showed that Standard k-ε model gives much higher value of any aforementioned turbulent properties with respect to other two equation turbulence models. Later it’s been discovered that TKE obtained from Standard k-ω model is almost same as Realizable k-ε model (for Re=298E03, the difference is about 1.8%). It has been observed that the skin friction coefficient at the bend region obtained from different two equation models (Standard, Realizable and RNG k-ϵ model and Standard k-ω model) are almost similar to each other for each sample of Reynolds number. Quadrilateral elements were taken into consideration for grid generation in this analysis. Also, to decrease cost and to achieve further accuracy as well as reduced time consumption mapped faced meshing was utilized.

2003 ◽  
Vol 125 (4) ◽  
pp. 445-460 ◽  
Author(s):  
Sonu S. Varghese ◽  
Steven H. Frankel

Pulsatile turbulent flow in stenotic vessels has been numerically modeled using the Reynolds-averaged Navier-Stokes equation approach. The commercially available computational fluid dynamics code (CFD), FLUENT, has been used for these studies. Two different experiments were modeled involving pulsatile flow through axisymmetric stenoses. Four different turbulence models were employed to study their influence on the results. It was found that the low Reynolds number k-ω turbulence model was in much better agreement with previous experimental measurements than both the low and high Reynolds number versions of the RNG (renormalization-group theory) k-ε turbulence model and the standard k-ε model, with regard to predicting the mean flow distal to the stenosis including aspects of the vortex shedding process and the turbulent flow field. All models predicted a wall shear stress peak at the throat of the stenosis with minimum values observed distal to the stenosis where flow separation occurred.


2021 ◽  
Vol 11 (14) ◽  
pp. 6319
Author(s):  
Sung-Woong Choi ◽  
Hyoung-Seock Seo ◽  
Han-Sang Kim

In the present study, the flow characteristics of butterfly valves with different sizes DN 80 (nominal diameter: 76.2 mm), DN 262 (nominal diameter: 254 mm), DN 400 (nominal diameter: 406 mm) were numerically investigated under different valve opening percentages. Representative two-equation turbulence models of two-equation k-epsilon model of Launder and Sharma, two-equation k-omega model of Wilcox, and two-equation k-omega SST model of Menter were selected. Flow characteristics of butterfly valves were examined to determine turbulence model effects. It was determined that increasing turbulence effect could cause many discrepancies between turbulence models, especially in areas with large pressure drop and velocity increase. In addition, sensitivity analysis of flow properties was conducted to determine the effect of constants used in each turbulence model. It was observed that the most sensitive flow properties were turbulence dissipation rate (Epsilon) for the k-epsilon turbulence model and turbulence specific dissipation rate (Omega) for the k-omega turbulence model.


Author(s):  
Karsten Tawackolian ◽  
Martin Kriegel

AbstractThis study looks to find a suitable turbulence model for calculating pressure losses of ventilation components. In building ventilation, the most relevant Reynolds number range is between 3×104 and 6×105, depending on the duct dimensions and airflow rates. Pressure loss coefficients can increase considerably for some components at Reynolds numbers below 2×105. An initial survey of popular turbulence models was conducted for a selected test case of a bend with such a strong Reynolds number dependence. Most of the turbulence models failed in reproducing this dependence and predicted curve progressions that were too flat and only applicable for higher Reynolds numbers. Viscous effects near walls played an important role in the present simulations. In turbulence modelling, near-wall damping functions are used to account for this influence. A model that implements near-wall modelling is the lag elliptic blending k-ε model. This model gave reasonable predictions for pressure loss coefficients at lower Reynolds numbers. Another example is the low Reynolds number k-ε turbulence model of Wilcox (LRN). The modification uses damping functions and was initially developed for simulating profiles such as aircraft wings. It has not been widely used for internal flows such as air duct flows. Based on selected reference cases, the three closure coefficients of the LRN model were adapted in this work to simulate ventilation components. Improved predictions were obtained with new coefficients (LRNM model). This underlined that low Reynolds number effects are relevant in ventilation ductworks and give first insights for suitable turbulence models for this application. Both the lag elliptic blending model and the modified LRNM model predicted the pressure losses relatively well for the test case where the other tested models failed.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


2000 ◽  
Vol 122 (3) ◽  
pp. 522-532 ◽  
Author(s):  
H. Lee ◽  
S.-H. Kang

Transition characteristics of a boundary layer on a NACA0012 airfoil are investigated by measuring unsteady velocity using hot wire anemometry. The airfoil is installed in the incoming wake generated by an airfoil aligned in tandem with zero angle of attack. Reynolds number based on the airfoil chord varies from 2.0×105 to 6.0×105; distance between two airfoils varies from 0.25 to 1.0 of the chord length. To measure skin friction coefficient identifying the transition onset and completion, an extended wall law is devised to accommodate transitional flows with pressure gradient and nonuniform inflows. Variations of the skin friction are quite similar to that of the flat plate boundary layer in the uniform turbulent inflow of high intensity. Measured velocity profiles are coincident with families generated by the modified wall law in the range up to y+=40. Turbulence intensity of the incoming wake shifts the onset location of transition upstream. The transitional region becomes longer as the airfoils approach one another and the Reynolds number increases. The mean velocity profile gradually varies from a laminar to logarithmic one during the transition. The maximum values of rms velocity fluctuations are located near y+=15-20. A strong positive skewness of velocity fluctuation is observed at the onset of transition and the overall rms level of velocity fluctuation reaches 3.0–3.5 in wall units. The database obtained will be useful in developing and evaluating turbulence models and computational schemes for transitional boundary layer. [S0098-2202(00)01603-5]


Author(s):  
Marco Colombo ◽  
Antonio Cammi ◽  
Marco E. Ricotti

This paper deals with a comprehensive study of fully developed single-phase turbulent flow and pressure drops in helically coiled channels. To the aim, experimental pressure drops were measured in an experimental campaign conducted at SIET labs, in Piacenza, Italy, in a test facility simulating the Steam Generator (SG) of a Generation III+ integral reactor. Very good agreement is found between data and some of the most common correlations available in literature. Also more data available in literature are considered for comparison. Experimental results are used to assess the results of Computational Fluid Dynamics (CFD) simulations. By means of the commercial CFD package FLUENT, different turbulence models are tested, in particular the Standard, RNG and realizable k-ε models, Shear Stress Transport (SST) k-ω model and second order Reynolds Stress Model (RSM). Moreover, particular attention is placed on the different types of wall functions utilized through the simulations, since they seem to have a great influence on the calculated results. The results aim to be a contribution to the assessment of the capability of turbulence models to simulate fully developed turbulent flow and pressure drops in helical geometry.


Author(s):  
Zhenfeng Wang ◽  
Peigang Yan ◽  
Hongfei Tang ◽  
Hongyan Huang ◽  
Wanjin Han

The different turbulence models are adopted to simulate NASA-MarkII high pressure air-cooled gas turbine. The experimental work condition is Run 5411. The paper researches that the effect of different turbulence models for the flow and heat transfer characteristics of turbine. The turbulence models include: the laminar turbulence model, high Reynolds number k-ε turbulence model, low Reynolds number turbulence model (k-ω standard format, k-ω-SST and k-ω-SST-γ-θ) and B-L algebra turbulence model which is adopted by the compiled code. The results show that the different turbulence models can give good flow characteristics results of turbine, but the heat transfer characteristics results are different. Comparing to the experimental results, k-ω-SST-θ-γ turbulence model results are more accurate and can simulate accurately the flow and heat transfer characteristics of turbine with transition flow characteristics. But k-ω-SST-γ-θ turbulence model overestimates the turbulence kinetic energy of blade local region and makes the heat transfer coefficient higher. It causes that local region temperature is higher. The results of B-L algebra turbulence model show that the results of B-L model are accurate besides it has 4% temperature error in the transition region. As to the other turbulence models, the results show that all turbulence models can simulate the temperature distribution on the blade pressure surface except the laminar turbulence model underestimates the heat transfer coefficient of turbulence flow region. On the blade suction surface with transition flow characteristics, high Reynolds number k-ε turbulence model overestimates the heat transfer coefficient and causes the blade surface temperature is high about 90K than the experimental result. Low Reynolds number k-ω standard format and k-ω-SST turbulence models also overestimate the blade surface temperature value. So it can draw a conclusion that the unreasonable choice of turbulence models can cause biggish errors for conjugate heat transfer problem of turbine. The combination of k-ω-SST-γ-θ model and B-L algebra model can get more accurate turbine thermal environment results. In addition, in order to obtain the affect of different turbulence models for gas turbine conjugate heat transfer problem. The different turbulence models are adopted to simulate the different computation mesh domains (First case and Second case). As to each cooling passages, the first case gives the wall heat transfer coefficient of each cooling passages and the second case considers the conjugate heat transfer course between the cooling passages and blade. It can draw a conclusion that the application of heat transfer coefficient on the wall of each cooling passages avoids the accumulative error. So, for the turbine vane geometry models with complex cooling passages or holes, the choice of turbulence models and the analysis of different mesh domains are important. At last, different turbulence characteristic boundary conditions of turbine inner-cooling passages are given and K-ω-SST-γ-θ turbulence model is adopted in order to obtain the effect of turbulence characteristic boundary conditions for the conjugate heat transfer computation results. The results show that the turbulence characteristic boundary conditions of turbine inner-cooling passages have a great effect on the conjugate heat transfer results of high pressure gas turbine.


Author(s):  
B. Song ◽  
R. S. Amano

Simulation of the complex flow inside a sharp U-bend needs both refined turbulence models and higher order numerical discretization schemes. In the present study, a nonlinear low-Reynolds number (low-Re) k–ω model including the cubic terms was employed to predict the turbulent flow through a square cross-sectioned U-bend with a sharp curvature, Rc/D = 0.65. In the turbulence model employed for the present study, the cubic terms are incorporated to represent the effect of extra strain-rates such as streamline curvature and three-dimensionality on both turbulence normal and shear stresses. In order to accurately predict such complex flowfields, a higher-order bounded interpolation scheme (Song, et al., 1999) has been used to discretize all the transport equations. The calculated results by using both the non-linear k–ω model and the linear low-Reynolds number k–ε model (Launder and Sharma, 1974) have been compared with experimental data. It is shown that the present model produces satisfactory predictions of the flow development inside the sharp U-bend and well captures the characteristics of the turbulence anisotropy within the duct core region and wall sub-layer.


1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


Sign in / Sign up

Export Citation Format

Share Document