scholarly journals Uncertainty Approaches for Solving Generalized Machine Maintenance Problem

2020 ◽  
Vol 5 (6) ◽  
pp. 675-682
Author(s):  
Samir Abdou Abass ◽  
Asmaa S. Abdallah ◽  
Marwa Shehata Elsayed ◽  
Eman Massoud Ahmed

In this paper, the generalized machine maintenance problem is formulated as linear programming model. The objective is to maximize the percentage production hours available per maintenance cycle of each machine.  Data in many real life engineering and economic problems suffers from inexactness. There are different approaches to deal with uncertain optimization problems. In this paper two different approaches of uncertainty, Fuzzy programming and rough interval programming approaches will be introduced. We deal the concerned problem with uncertain data in coefficients of the constraints for the two approaches. A numerical example is introduced to clarify the two proposed approaches. A comparison study between the obtained results of the two proposed approaches and the results of interval approach for Samir A. and Marwa Sh [3] will be introduced.

Author(s):  
Carson K.-S. Leung

Big data analysis and mining aims to discover implicit, previously unknown, and potentially useful information and knowledge from big databases that contain high volumes of valuable veracious data collected or generated at a high velocity from a wide variety of data sources. Among different big data mining tasks, this chapter focuses on big data analysis and mining for frequent patterns. By relying on the MapReduce programming model, researchers only need to specify the “map” and “reduce” functions to discover frequent patterns from (1) big databases of precise data in a breadth-first manner or in a depth-first manner and/or from (2) big databases of uncertain data. Such a big data analysis and mining process can be sped up. The resulting (constrained or unconstrained) frequent patterns mined from big databases provide users with new insights and a sound understanding of users' patterns. Such knowledge is useful is many real-life information science and technology applications.


Author(s):  
Carson K.-S. Leung

As new forms of information science and technology, big data analysis and mining aims to discover implicit, previously unknown, and potentially useful information and knowledge from big databases that contain high volumes of valuable veracious data collected or generated at a high velocity from a wide variety of data sources. Among different big data mining tasks, this chapter focuses on big data analysis and mining for frequent patterns. By relying on the MapReduce programming model, researchers only need to specify the “map” and “reduce” functions to discover frequent patterns from (1) big databases of precise data in a breadth-first manner or in a depth-first manner and/or from (2) big databases of uncertain data. Such a big data analysis and mining process can be sped up. The resulting (constrained or unconstrained) frequent patterns mined from big databases provide users with new insights and a sound understanding of users' patterns. Such knowledge is useful is many real-life information science and technology applications.


2012 ◽  
Vol 2 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Saber Saati ◽  
Adel Hatami-Marbini ◽  
Madjid Tavana ◽  
Elham Hajiahkondi

Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although LP models require well-suited information and precise data, managers and decision makers dealing with optimization problems often have a lack of information on the exact values of some parameters used in their models. Fuzzy sets provide a powerful tool for dealing with this kind of imprecise, vague, uncertain or incomplete data. In this paper, the authors propose a two-fold model which consists of two new methods for solving fuzzy LP (FLP) problems in which the variables and the coefficients of the constraints are characterized by fuzzy numbers. In the first method, the authors transform their FLP model into a conventional LP model by using a new fuzzy ranking method and introducing a new supplementary variable to obtain the fuzzy and crisp optimal solutions simultaneously with a single LP model. In the second method, the authors propose a LP model with crisp variables for identifying the crisp optimal solutions. The authors demonstrate the details of the proposed method with two numerical examples.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1456
Author(s):  
Stefka Fidanova ◽  
Krassimir Todorov Atanassov

Some of industrial and real life problems are difficult to be solved by traditional methods, because they need exponential number of calculations. As an example, we can mention decision-making problems. They can be defined as optimization problems. Ant Colony Optimization (ACO) is between the best methods, that solves combinatorial optimization problems. The method mimics behavior of the ants in the nature, when they look for a food. One of the algorithm parameters is called pheromone, and it is updated every iteration according quality of the achieved solutions. The intuitionistic fuzzy (propositional) logic was introduced as an extension of Zadeh’s fuzzy logic. In it, each proposition is estimated by two values: degree of validity and degree of non-validity. In this paper, we propose two variants of intuitionistic fuzzy pheromone updating. We apply our ideas on Multiple-Constraint Knapsack Problem (MKP) and compare achieved results with traditional ACO.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Author(s):  
Breno A. de Melo Menezes ◽  
Nina Herrmann ◽  
Herbert Kuchen ◽  
Fernando Buarque de Lima Neto

AbstractParallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.


2017 ◽  
Vol 9 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Sławomir Biruk ◽  
Piotr Jaśkowski ◽  
Agata Czarnigowska

AbstractThe authors aim to provide a set of tools to facilitate the main stages of the competitive bidding process for construction contractors. These involve 1) deciding whether to bid, 2) calculating the total price, and 3) breaking down the total price into the items of the bill of quantities or the schedule of payments to optimise contractor cash flows. To define factors that affect the decision to bid, the authors rely upon literature on the subject and put forward that multi-criteria methods are applied to calculate a single measure of contract attractiveness (utility value). An attractive contract implies that the contractor is likely to offer a lower price to increase chances of winning the competition. The total bid price is thus to be interpolated between the lowest acceptable and the highest justifiable price based on the contract attractiveness. With the total bid price established, the next step is to split it between the items of the schedule of payments. A linear programming model is proposed for this purpose. The application of the models is illustrated with a numerical example.The model produces an economically justified bid price together with its breakdown, maintaining the logical proportion between unit prices of particular items of the schedule of payment. Contrary to most methods presented in the literature, the method does not focus on the trade-off between probability of winning and the price but is solely devoted to defining the most reasonable price under project-specific circumstances.The approach proposed in the paper promotes a systematic approach to real-life bidding problems. It integrates practices observed in operation of construction enterprises and uses directly available input. It may facilitate establishing the contractor’s in-house procedures and managerial decision support systems for the pricing process.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jianxun Cui ◽  
Shi An ◽  
Meng Zhao

During real-life disasters, that is, earthquakes, floods, terrorist attacks, and other unexpected events, emergency evacuation and rescue are two primary operations that can save the lives and property of the affected population. It is unavoidable that evacuation flow and rescue flow will conflict with each other on the same spatial road network and within the same time window. Therefore, we propose a novel generalized minimum cost flow model to optimize the distribution pattern of these two types of flow on the same network by introducing the conflict cost. The travel time on each link is assumed to be subject to a bureau of public road (BPR) function rather than a fixed cost. Additionally, we integrate contraflow operations into this model to redesign the network shared by those two types of flow. A nonconvex mixed-integer nonlinear programming model with bilinear, fractional, and power components is constructed, and GAMS/BARON is used to solve this programming model. A case study is conducted in the downtown area of Harbin city in China to verify the efficiency of proposed model, and several helpful findings and managerial insights are also presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Minggang Dong ◽  
Ning Wang ◽  
Xiaohui Cheng ◽  
Chuanxian Jiang

Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE) for constrained optimization problems (COPs). More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.


Sign in / Sign up

Export Citation Format

Share Document