scholarly journals How Triple Mutation of Coronavirus (SARS-CoV-2) Developed in India

2021 ◽  
Vol 3 (3) ◽  
pp. 14-18
Author(s):  
Sheema Fatima Khan

The COVID-19 infection is caused by the virus SARS-CoV-2. It is a single stranded RNA virus hence has high mutation rate. In a populous country like India, it can find large number of hosts to infect and thus undergo strong mutation. The Indian variant B.1.617 undergone three mutation to form B.1.617.2 (double mutant) and B.1.617.3 (triple mutant). The variant B.1.617.2 is declared a Variant of Concern due to its increase transmissibility, immune escape, increase effect of infection. The variant is also suspected to reduce vaccine efficacy and efficiency. It also the cause of overwhelming second wave of coronavirus in India. This harmful variant has also spread to other countries such as UK and Australia. Such harmful mutations are a result of aiming for herd immunity naturally against the virus. This article aims to understand the triple mutation and cause of devastating COVID-19 wave in India. And analyze steps to prevent future outbreaks.

2021 ◽  
Vol 6 ◽  
pp. 66-71
Author(s):  
H. S. Darling ◽  
Purvish Parikh ◽  
Radhika Vaishnav ◽  
Amit Verma ◽  
Ashish Gulia ◽  
...  

When India did well to contain the first wave of coronavirus disease 2019 (COVID-19) pandemic, none of us had an inkling of the magnitude that the second wave was going to take. One of the main reasons for the resurgence is several new mutants of this virus – the important ones for our country being UK Variant, Indian Double mutant, South African, and Brazil variants. Questions regarding their impact on virulence, pathogenicity, transmissibility, detection, clinical symptomatology, morbidity, mortality, potential curability, and possibly decreased therapeutic/ vaccine efficacy are being ascertained. We hereby summarize the importance of these variants with respect to Indian scenario, with emphasis on implications regarding COVID-19 diagnosis and efficacy of current vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Honglei Wang ◽  
Yangyang Xu ◽  
Wenhai Feng

Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 364
Author(s):  
Jun Ma ◽  
Lulu Ma ◽  
Meiting Yang ◽  
Wei Wu ◽  
Wenhai Feng ◽  
...  

Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.


Author(s):  
Muhammed Elayadeth Meethal ◽  
Punnoth Poonkuzhi Naseef ◽  
Mohamed Saheer Kuruniyan ◽  
Mansoor C Abdulla ◽  
Shyju Ollakkod ◽  
...  

The global COVID-19 pandemic claiming global spread continues to evolve, now to the verge of a third wave of outbreak possibly caused by the novel variants of concern of severe acute respiratory syndrome corona virus-2 (SARS-CoV-2). The test positivity rate (TPR) and case fatal-ity rate (CFR) have increased steeply in the second wave of COVID-19 compared to the first. From the example of Kerala, a state in southern India, positivity increased from 1.33% at the peak of wave one in 10th June 2020 to 13.45% during 10th June 2021 in the second wave of pandemic. SARS-CoV-2 is an enveloped single-stranded RNA virus. Angiotensin-Converting Enzyme-2 (ACE-2) is a trans membrane surface protein present on multiple types of cells in the human body to which the viral spike protein attaches. Genetic variations in the SARS-CoV-2 and ACE2 receptor can affect the transmission, clinical manifestations, mortality and the efficacy of drugs and vaccines for COVID-19. Mutations are the primary cause of genetic variations. Given the high TPR and CFR, it is necessary to understand the variations of SARS-CoV-2 and cellular receptors of SARS-CoV-2 at the molecular level. In this review, we summarize the impact of genetic and ep-igenetic variations in determining COVID-19 pathogenesis and disease outcome.


2021 ◽  
Author(s):  
Shilei Zhao ◽  
Tong Sha ◽  
Yongbiao Xue ◽  
Chung-I Wu ◽  
Hua Chen

The availability of vaccines provides a promising solution to containing the COVID-19 pandemic. Here, we develop an epidemiological model to quantitatively analyze and predict the epidemic dynamics of COVID-19 under vaccination. The model is applied to the daily released numbers of confirmed cases of Israel and United States of America to explore and predict the trend under vaccination based on their current epidemic status and intervention measures. For Israel, of which 53.83% of the population was fully vaccinated, under the current intensity of NPIs and vaccination scheme, the pandemic is predicted to end between May 14, 2021 to May 16, 2021 depending on an immunity duration between 180 days and 365 days; Assuming no NPIs after March 24, 2021, the pandemic will ends later, between July 4, 2021 to August 26, 2021. For USA, if we assume the current vaccination rate (0.268% per day) and intensity of NPIs, the pandemic will end between February 3, 2022 and August 17, 2029 depending on an immunity duration between 180 days and 365 days. However, assuming an immunity duration of 180 days and with no NPIs, the pandemic will not end, and instead reach an equilibrium state with a proportion of the population remaining actively infected. Overall the daily vaccination rate should be chosen according to the vaccine efficacy and the immunity duration to achieve herd immunity. In some situations, vaccination alone cannot stop the pandemic, and NPIs are necessary both to supplement vaccination and accelerate the end of the pandemic. Considering that vaccine efficacy and duration of immunity may be reduced for new mutant strains, it is necessary to remain cautiously optimistic about the prospect of the pandemic under vaccination.


Author(s):  
Sudarshan Ramaswamy ◽  
Meera Dhuria ◽  
Sumedha M. Joshi ◽  
Deepa H Velankar

Introduction: Epidemiological comprehension of the COVID-19 situation in India can be of great help in early prediction of any such indications in other countries and possibilities of the third wave in India as well. It is essential to understand the impact of variant strains in the perspective of the rise in daily cases during the second wave – Whether the rise in cases witnessed is due to the reinfections or the surge is dominated by emergence of mutants/variants and reasons for the same. Overall objective of this study is to predict early epidemiological indicators which can potentially lead to COVID-19 third wave in India. Methodology: We analyzed both the first and second waves of COVID-19 in India and using the data of India’s SARS-CoV-2 genomic sequencing, we segregated the impact of the Older Variant (OV) and the other major variants (VOI / VOC).  Applying Kermack–McKendrick SIR model to the segregated data progression of the epidemic in India was plotted in the form of proportion of people infected. An equation to explain herd immunity thresholds was generated and further analyzed to predict the possibilities of the third wave. Results: Considerable difference in ate of progression of the first and second wave was seen. The study also ascertains that the rate of infection spread is higher in Delta variant and is expected to have a higher threshold (>2 times) for herd immunity as compared to the OV. Conclusion: Likelihood of the occurrence of the third wave seems unlikely based on the current analysis of the situation, however the possibilities cannot be ruled out. Understanding the epidemiological details of the first and second wave helped in understanding the focal points responsible for the surge in cases during the second wave and has given further insight into the future.


2021 ◽  
Author(s):  
Oliver Eales ◽  
Andrew Page ◽  
Leonardo de Oliveira Martins ◽  
Haowei Wang ◽  
Barbara Bodinier ◽  
...  

Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Here we present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. From 9 to 27 September 2021 (round 14) and 19 October to 5 November 2021 (round 15), all lineages sequenced within REACT-1 were Delta or a Delta sub-lineage with 44 unique lineages identified. The proportion of the original Delta variant (B.1.617.2) was found to be increasing between September and November 2021, which may reflect an increasing number of sub-lineages which have yet to be identified. The proportion of B.1.617.2 was greatest in London, which was further identified as a region with an increased level of genetic diversity. The Delta sub-lineage AY.4.2 was found to be robustly increasing in proportion, with a reproduction number 15% (8%, 23%) greater than its parent and most prevalent lineage, AY.4. Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England. Though no difference in the viral load based on cycle threshold (Ct) values was identified, a lower proportion of those infected with AY.4.2 had symptoms for which testing is usually recommend (loss or change of sense of taste, loss or change of sense of smell, new persistent cough, fever), compared to AY.4 (p = 0.026). The evolutionary rate of SARS-CoV-2, as measured by the mutation rate, was found to be slowing down during the study period, with AY.4.2 further found to have a reduced mutation rate relative to AY.4. As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5171 ◽  
Author(s):  
Kaja M. Abbas ◽  
Gloria J. Kang ◽  
Daniel Chen ◽  
Stephen R. Werre ◽  
Achla Marathe

Objective The study objective is to analyze influenza vaccination status by demographic factors, perceived vaccine efficacy, social influence, herd immunity, vaccine cost, health insurance status, and barriers to influenza vaccination among adults 18 years and older in the United States. Background Influenza vaccination coverage among adults 18 years and older was 41% during 2010–2011 and has increased and plateaued at 43% during 2016–2017. This is below the target of 70% influenza vaccination coverage among adults, which is an objective of the Healthy People 2020 initiative. Methods We conducted a survey of a nationally representative sample of adults 18 years and older in the United States on factors affecting influenza vaccination. We conducted bivariate analysis using Rao-Scott chi-square test and multivariate analysis using weighted multinomial logistic regression of this survey data to determine the effect of demographics, perceived vaccine efficacy, social influence, herd immunity, vaccine cost, health insurance, and barriers associated with influenza vaccination uptake among adults in the United States. Results Influenza vaccination rates are relatively high among adults in older age groups (73.3% among 75 + year old), adults with education levels of bachelor’s degree or higher (45.1%), non-Hispanic Whites (41.8%), adults with higher incomes (52.8% among adults with income of over $150,000), partnered adults (43.2%), non-working adults (46.2%), and adults with internet access (39.9%). Influenza vaccine is taken every year by 76% of adults who perceive that the vaccine is very effective, 64.2% of adults who are socially influenced by others, and 41.8% of adults with health insurance, while 72.3% of adults without health insurance never get vaccinated. Facilitators for adults getting vaccinated every year in comparison to only some years include older age, perception of high vaccine effectiveness, higher income and no out-of-pocket payments. Barriers for adults never getting vaccinated in comparison to only some years include lack of health insurance, disliking of shots, perception of low vaccine effectiveness, low perception of risk for influenza infection, and perception of risky side effects. Conclusion Influenza vaccination rates among adults in the United States can be improved towards the Healthy People 2020 target of 70% by increasing awareness of the safety, efficacy and need for influenza vaccination, leveraging the practices and principles of commercial and social marketing to improve vaccine trust, confidence and acceptance, and lowering out-of-pocket expenses and covering influenza vaccination costs through health insurance.


Author(s):  
Rupinder Bakshi ◽  
Satinder Kaur ◽  
Karashdeep Kaur ◽  
Ramanpreet Kaur ◽  
Jaspreet Kaur Boparai ◽  
...  

SARS-CoV-2 variants rapid emergence has posed critical challenge of higher transmission and immune escape causing serious threats to control the pandemic. The present study was carried out in confirmed cases of SARS-CoV-2 patients to elucidate the prevalence of SARS-CoV-2 variant strain. We performed RT-PCR using extracted RNA from the nasopharyngeal swabs of suspected Covid-19 patients. Confirmed positive cases with CT<25 were subjected to whole-genome sequencing to track the prevalence of the virus in the Malwa region of Punjab. The presence of B.1, B.1.1.7, B.1.351, B.1.617.1, B.1.617.2, AY.1 and other unidentified variants of SARS-CoV-2 was found in the studied population. Among all the variants, B.1.1.7 (UK variant) and B.1.617.2 (delta-Indian variant) was found to be the most dominant variant in the population and was found majorly in Patiala followed by Ludhiana, SBS Nagar, Mansa and Sangrur. In addition to this, sequencing results also observed that the dominant trait was more prevalent in male population and age group 21-40 years. The B.1.1.7 and B.1.617.2 variant of SARS-CoV-2 is replacing the wild type (Wuhan Strain) and emerging as the dominant variant in Punjab.


Sign in / Sign up

Export Citation Format

Share Document