scholarly journals Will the Large-scale Vaccination Succeed in Containing the COVID-19 Epidemic and How Soon?

Author(s):  
Shilei Zhao ◽  
Tong Sha ◽  
Yongbiao Xue ◽  
Chung-I Wu ◽  
Hua Chen

The availability of vaccines provides a promising solution to containing the COVID-19 pandemic. Here, we develop an epidemiological model to quantitatively analyze and predict the epidemic dynamics of COVID-19 under vaccination. The model is applied to the daily released numbers of confirmed cases of Israel and United States of America to explore and predict the trend under vaccination based on their current epidemic status and intervention measures. For Israel, of which 53.83% of the population was fully vaccinated, under the current intensity of NPIs and vaccination scheme, the pandemic is predicted to end between May 14, 2021 to May 16, 2021 depending on an immunity duration between 180 days and 365 days; Assuming no NPIs after March 24, 2021, the pandemic will ends later, between July 4, 2021 to August 26, 2021. For USA, if we assume the current vaccination rate (0.268% per day) and intensity of NPIs, the pandemic will end between February 3, 2022 and August 17, 2029 depending on an immunity duration between 180 days and 365 days. However, assuming an immunity duration of 180 days and with no NPIs, the pandemic will not end, and instead reach an equilibrium state with a proportion of the population remaining actively infected. Overall the daily vaccination rate should be chosen according to the vaccine efficacy and the immunity duration to achieve herd immunity. In some situations, vaccination alone cannot stop the pandemic, and NPIs are necessary both to supplement vaccination and accelerate the end of the pandemic. Considering that vaccine efficacy and duration of immunity may be reduced for new mutant strains, it is necessary to remain cautiously optimistic about the prospect of the pandemic under vaccination.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 803
Author(s):  
Glenn Young ◽  
Pengcheng Xiao ◽  
Ken Newcomb ◽  
Edwin Michael

Background: The development and authorization of COVID-19 vaccines has provided the clearest path forward to eliminate community spread and thus end the ongoing SARS-CoV-2 pandemic. However, the limited pace at which the vaccine can be administered motivates the question, to what extent must we continue to adhere to social intervention measures such as mask wearing and social distancing? Methods: We develop a mathematical model of COVID-19 spread incorporating both vaccine dynamics and socio-epidemiological parameters. We use this model to study two important measures of disease control and eradication, the effective reproductive number Rt and the peak intensive care unit (ICU) caseload, over three key parameters: social measure adherence, vaccination rate, and vaccination coverage. Results: Our results suggest that, due to the slow pace of vaccine administration, social measures must be maintained by a large proportion of the population until a sufficient proportion of the population becomes vaccinated for the pandemic to be eradicated. By contrast, with reduced adherence to social measures, hospital ICU cases will greatly exceed capacity, resulting in increased avoidable loss of life. We then investigate the threat of localized outbreaks in low-vaccinated populations that have removed all social intervention mandates, and show that such populations could remain highly susceptible to major outbreaks particularly in the face of more easily transmissible variants.  Conclusions: These findings highlight the complex interplay involved between vaccination and social protective measures, and indicate the practical importance of continuing with extant social measures while vaccines are scaled up to allow the development of the herd immunity needed to end or control SARS-CoV-2 sustainably.


2021 ◽  
Author(s):  
Yong Ge ◽  
Wenbin Zhang ◽  
Xilin Wu ◽  
Corrine Ruktanonchai ◽  
Haiyan Liu ◽  
...  

Abstract Non-pharmaceutical interventions (NPIs) and vaccination are two fundamental approaches to mitigate the coronavirus disease 2019 (Covid-19) pandemic. Vaccination strategies are generally less costly and socially/economically disruptive than NPI strategies, such as business closures, social distancing, and face mask mandates, as evidenced by highly vaccinated countries generally rolling back NPIs. However, the respective real-world impact of an NPI strategy versus vaccination strategy, or the combination of both, on mitigating Covid-19 transmission remains uncertain. To address this, we built a Bayesian inference model to explore the changing effectiveness of NPIs and vaccination based on the assembled large-scale dataset, including epidemiological parameters, variants, vaccines, and control variable. Here we show that NPIs were still considerably complementary or even synergistic to vaccination in the effort to curb the Covid-19 infection before reaching herd immunity. We found that (1) the synergistic effect of NPIs and vaccination was 46.9% (reduction in reproduction number) in September 2021, whereas the effects of NPIs and vaccination alone were 20.7% and 28.8%, respectively; (2) effectiveness of NPIs is less sensitive to emerging COVID-19 variants but decreases with vaccination progress, as NPIs may unnecessarily restrict the vaccinated population. The effectiveness of NPIs alone declined approximately 23% since the introduction of vaccination strategies, where the relaxation of NPIs promoted the decline from May 2021. Our results demonstrate that the decision to relax NPIs should consider the real-world vaccination rate of the relevant population, which is determined by the observed vaccine efficacy in relation to extant and emerging variants.


2022 ◽  
Author(s):  
Zhenxiao Ren ◽  
Mitsuhiro Nishimura ◽  
Lidya Handayani Tjan ◽  
Koichi Furukawa ◽  
Yukiya Kurahashi ◽  
...  

Background: The COVID-19 pandemic situation has been changing drastically worldwide due to the continuous appearance of SARS-CoV-2 variants and the roll-out of mass vaccination. Periodic cross-sectional studies during the surge of COVID-19 cases is essential to elucidate the pandemic situation. Methods: Sera of 1,000 individuals who underwent a health check-up in Hyogo Prefecture Health Promotion Association clinics in Japan were collected in August and December 2021. Antibodies against SARS-CoV-2 N and S antigens were detected in the sera by an electrochemiluminescence immunoassay (ECLIA) and an enzyme-linked immunosorbent assay (ELISA), respectively. The sera's neutralization activities for the conventional SARS-CoV-2 (D614G), Delta, and Omicron variants were measured. Results: The seropositive rates for the antibody against N antigen were 2.1% and 3.9% in August and December 2021 respectively, demonstrating a Delta variant endemic during that time; the actual infection rate was approximately twofold higher than the rate estimated based on the polymerase chain reaction (PCR)-based diagnosis. The anti-S seropositive rate was 38.7% in August and it reached 90.8% in December, in concordance with the vaccination rate in Japan. In the December cohort, 78.7% of the sera showed neutralizing activity against the Delta variant, whereas that against the Omicron was much lower at 36.6%. Conclusions: These analyses revealed that herd immunity against SARS-CoV-2 including the Delta variant was established in December 2021, leading to convergence of the variants. The low neutralizing activity against the Omicron variant suggests the need for the further promotion of the prompt three-dose vaccination to overcome this variant's imminent 6th wave in Japan.


2021 ◽  
Author(s):  
Françoise Kemp ◽  
Daniele Proverbio ◽  
Atte Aalto ◽  
Laurent Mombaerts ◽  
Aymeric Fouquier d’Hérouël ◽  
...  

AbstractBackgroundWorldwide more than 72 million people have been infected and 1.6 million died with SARS-CoV-2 by 15th December 2020. Non-pharmaceutical interventions which decrease social interaction have been implemented to reduce the spread of SARS-CoV-2 and to mitigate stress on healthcare systems and prevent deaths. The pandemic has been tackled with disparate strategies by distinct countries resulting in different epidemic dynamics. However, with vaccines now becoming available, the current urgent open question is how the interplay between vaccination strategies and social interaction will shape the pandemic in the next months.MethodsTo address this question, we developed an extended Susceptible-Exposed-Infectious-Removed (SEIR) model including social interaction, undetected cases and the progression of patients trough hospitals, intensive care units (ICUs) and death. We calibrated our model to data of Luxem-bourg, Austria and Sweden, until 15th December 2020. We incorporated the effect of vaccination to investigate under which conditions herd immunity would be achievable in 2021.ResultsThe model reveals that Sweden has the highest fraction of undetected cases, Luxembourg displays the highest fraction of infected population, and all three countries are far from herd immunity as of December 2020. The model quantifies the level of social interactions, and allows to assess the level which would keep Reff (t) below 1. In December 2020, this level is around 1/3 of what it was before the pandemic for all the three countries. The model allows to estimate the vaccination rate needed for herd immunity and shows that 2700 vaccinations/day are needed in Luxembourg to reach it by mid of April and 45,000 for Austria and Sweden. The model estimates that vaccinating the whole country’s population within 1 year could lead to herd immunity by July in Luxembourg and by August in Austria and Sweden.ConclusionThe model allows to shed light on the dynamics of the epidemics in different waves and countries. Our results emphasize that vaccination will help considerably but not immediately and therefore social measures will remain important for several months before they can be fully alleviated.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Huo ◽  
Jing Chen ◽  
Shigui Ruan

Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6% (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693%,0.814%]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.


Author(s):  
Yi-Tui Chen

Although vaccination is carried out worldwide, the vaccination rate varies greatly. As of 24 May 2021, in some countries, the proportion of the population fully vaccinated against COVID-19 has exceeded 50%, but in many countries, this proportion is still very low, less than 1%. This article aims to explore the impact of vaccination on the spread of the COVID-19 pandemic. As the herd immunity of almost all countries in the world has not been reached, several countries were selected as sample cases by employing the following criteria: more than 60 vaccine doses per 100 people and a population of more than one million people. In the end, a total of eight countries/regions were selected, including Israel, the UAE, Chile, the United Kingdom, the United States, Hungary, and Qatar. The results find that vaccination has a major impact on reducing infection rates in all countries. However, the infection rate after vaccination showed two trends. One is an inverted U-shaped trend, and the other is an L-shaped trend. For those countries with an inverted U-shaped trend, the infection rate begins to decline when the vaccination rate reaches 1.46–50.91 doses per 100 people.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1089-1099
Author(s):  
Gwenaël Ruprich-Robert ◽  
Véronique Berteaux-Lecellier ◽  
Denise Zickler ◽  
Arlette Panvier-Adoutte ◽  
Marguerite Picard

Abstract Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2+ background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to β-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.


2021 ◽  
pp. 194855062199962
Author(s):  
Jennifer S. Trueblood ◽  
Abigail B. Sussman ◽  
Daniel O’Leary

Development of an effective COVID-19 vaccine is widely considered as one of the best paths to ending the current health crisis. While the ability to distribute a vaccine in the short-term remains uncertain, the availability of a vaccine alone will not be sufficient to stop disease spread. Instead, policy makers will need to overcome the additional hurdle of rapid widespread adoption. In a large-scale nationally representative survey ( N = 34,200), the current work identifies monetary risk preferences as a correlate of take-up of an anticipated COVID-19 vaccine. A complementary experiment ( N = 1,003) leverages this insight to create effective messaging encouraging vaccine take-up. Individual differences in risk preferences moderate responses to messaging that provides benchmarks for vaccine efficacy (by comparing it to the flu vaccine), while messaging that describes pro-social benefits of vaccination (specifically herd immunity) speeds vaccine take-up irrespective of risk preferences. Findings suggest that policy makers should consider risk preferences when targeting vaccine-related communications.


2012 ◽  
Vol 54 (1-2) ◽  
pp. 23-36 ◽  
Author(s):  
E. K. WATERS ◽  
H. S. SIDHU ◽  
G. N. MERCER

AbstractPatchy or divided populations can be important to infectious disease transmission. We first show that Lloyd’s mean crowding index, an index of patchiness from ecology, appears as a term in simple deterministic epidemic models of the SIR type. Using these models, we demonstrate that the rate of movement between patches is crucial for epidemic dynamics. In particular, there is a relationship between epidemic final size and epidemic duration in patchy habitats: controlling inter-patch movement will reduce epidemic duration, but also final size. This suggests that a strategy of quarantining infected areas during the initial phases of a virulent epidemic might reduce epidemic duration, but leave the population vulnerable to future epidemics by inhibiting the development of herd immunity.


Sign in / Sign up

Export Citation Format

Share Document