scholarly journals Design of a test stand for real values of electromagnetic field levels emitted by a mobile phone during a telephone conversation

2018 ◽  
Vol 19 (12) ◽  
pp. 37-42
Author(s):  
Milena Ilona Abramek ◽  
Joanna Kozieł ◽  
Paweł Mazurek

The paper presents a conceptual design of a laboratory station for measuring the intensity of electromagnetic fields emitted during conversations by mobile phones. A significant part of our society's population is increasingly using cellular telephones. Among them are vehicle drivers who use mobile phones or smartphones more and more often for travel communication and logistics purposes. The use of this type of electronic device carries some risk of exposure to electromagnetic fields (EM). The article presents the results of experimental research on randomly chosen cell phones from the years 2011-2017. The method of taking measurements was carried out as part of the author's engineering work [1]. It should be emphasized that all the results of the EM field tests of telephones used for experimental research were within the limit of the permissible electric field strength of the electromagnetic field of 7 V / m.

2017 ◽  
Vol 16 (5) ◽  
pp. 1177-1184
Author(s):  
Raimondas Buckus ◽  
Pranas Baltrenas ◽  
Jonas Skeivalas ◽  
Raimondas Grubliauskas ◽  
Igor Cretescu

2012 ◽  
Vol 9 (1) ◽  
pp. 110-115
Author(s):  
L.A. Kovaleva ◽  
R.R. Zinnatullin ◽  
V.N. Blagochinnov ◽  
A.A. Musin ◽  
Yu.I. Fatkhullina ◽  
...  

Some results of experimental and numerical studies of the influence of radio-frequency (RF) and microwave (MW) electromagnetic (EM) fields on water-in-oil emulsions are presented. A detailed investigation of the dependence of the dielectric properties of emulsions on the frequency of the field makes it possible to establish the most effective frequency range of the EM influence. The results of water-in-oil emulsion stability in the RF EM field depending on their dielectric properties are presented. The effect of the MW EM field on the emulsion in a dynamic mode has been studied experimentally. In an attempt to understand the mechanism of emulsion destruction the mathematical model for a single emulsion droplet dynamics in radio-frequency (RF) and microwave (MW) electromagnetic fields is formulated.


2021 ◽  
pp. 120-129
Author(s):  
A. F. Sekachev ◽  
V. V. Shalai ◽  
Yu. D. Zemenkov ◽  
A. F. Fitzner ◽  
A. E. Yakovlev

The supply of heat to oil media pumped by pipeline transport systems is one of the main problems in the oil industry. The article describes a method for supplying heat to oil-containing media using the energy of an electromagnetic field. The possibility of releasing surfaces in contact with oil sludge under the influence of electromagnetic fields has been shown by experiment. We describe the design and parameters of a biconical horn radiator of a microwave electromagnetic field operating at a frequency of 2 450 MHz. A method for generating energy and transmitting it to the emitter by means of a coaxial cable is shown. Testing the emitter in oil placed in an optically transparent and radio-tight double-walled tank is presented. The design of the stand allows us to safely examine the thermal process using a thermal imager. The installation made it possible to heat 7 liters of oil at 15 °C in 12 minutes.


2013 ◽  
Vol 11 ◽  
pp. 347-352
Author(s):  
M. Vuchkovikj ◽  
I. Munteanu ◽  
T. Weiland

Abstract. In the last two decades, the increasing number of electronic devices used in day-to-day life led to a growing interest in the study of the electromagnetic field interaction with biological tissues. The design of medical devices and wireless communication devices such as mobile phones benefits a lot from the bio-electromagnetic simulations in which digital human models are used. The digital human models currently available have an upright position which limits the research activities in realistic scenarios, where postured human bodies must be considered. For this reason, a software application called "BodyFlex for CST STUDIO SUITE" was developed. In its current version, this application can deform the voxel-based human model named HUGO (Dipp GmbH, 2010) to allow the generation of common postures that people use in normal life, ensuring the continuity of tissues and conserving the mass to an acceptable level. This paper describes the enhancement of the "BodyFlex" application, which is related to the movements of the forearm and the wrist of a digital human model. One of the electromagnetic applications in which the forearm and the wrist movement of a voxel based human model has a significant meaning is the measurement of the specific absorption rate (SAR) when a model is exposed to a radio frequency electromagnetic field produced by a mobile phone. Current SAR measurements of the exposure from mobile phones are performed with the SAM (Specific Anthropomorphic Mannequin) phantom which is filled with a dispersive but homogeneous material. We are interested what happens with the SAR values if a realistic inhomogeneous human model is used. To this aim, two human models, a homogeneous and an inhomogeneous one, in two simulation scenarios are used, in order to examine and observe the differences in the results for the SAR values.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7395
Author(s):  
Marco Xavier Rivera Rivera González ◽  
Nazario Félix Félix González ◽  
Isabel López ◽  
Juan Sebastián Ochoa Ochoa Zambrano ◽  
Andrés Miranda Miranda Martínez ◽  
...  

A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31408-31420
Author(s):  
Palalle G. Tharushi Perera ◽  
Nevena Todorova ◽  
Zoltan Vilagosh ◽  
Olha Bazaka ◽  
The Hong Phong Nguyen ◽  
...  

Membrane model systems capable of mimicking live cell membranes were used for the first time in studying the effects arising from electromagnetic fields (EMFs) of 18 GHz where membrane permeability was observed following exposure.


2007 ◽  
Vol 405 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Joseph Friedman ◽  
Sarah Kraus ◽  
Yirmi Hauptman ◽  
Yoni Schiff ◽  
Rony Seger

The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes.


Sign in / Sign up

Export Citation Format

Share Document