scholarly journals Moringa oleifera (drumstick tree) seed coagulant protein (MoCP) binds cadmium - preparation and characterization of nanoparticles

2017 ◽  
Vol 1 (4) ◽  
pp. 285-292
Author(s):  
Konada R. S. Reddy ◽  
Vinay Kumar ◽  
Majeti N. V. Prasad ◽  
Nadimpalli S. Kumar

Abstract Moringa oleifera is grown globally. It is a multipurpose tree and the seeds are rich in phytochemicals with antimicrobial activities. The crude powder of seeds clarify the turbid and metal contaminated water. M. oleifera (drumstick tree) seed coagulant protein (MoCP) was isolated to homogeneity from the crude extracts by carboxymethyl cellulose chromatography (CMC) and gel filtration. The molecular weight of the protein on gel filtration was 13 kDa and in SDS-PAGE it migrated as a single band under reducing conditions with molecular mass of 6.5 kDa (dimeric). Immobilized MoCP selectively binds cadmium from aqueous solutions (pH 2.0-7.0) with maximum binding at pH 6.0 in 180 min when tested at 10-600 minutes. It also bound the metal in the concentration range of 30-70mgL-1. The adsorption kinetics was better described by pseudo second order and the data better explained by freundlich isotherm model than Langmuir isotherm model as in Freundlich model the correlation coefficient (R2) is high and the calculated qmax is very close to the experimental qmax rather than Langmuir isotherm model. Furthermore, the nanoparticles of MoCP were prepared and characterized using transmission electron microscopy (TEM). The authenticity of the isolated protein and the nanopraticles prepared was confirmed by specific reactivity with the MoCP antibody raised earlier in our laboratory.

Author(s):  
Davoud Balarak ◽  
Fatemeh Bandani ◽  
Zaccheus Shehu ◽  
Nehad J. Ahmed

Equilibrium sorption of the Thermally Treated Rice Husk (TTRH) for Sulfamethazine (SMT) adsorption was studied. The Physico-chemical properties of the modified rice husk were determined. The equilibrium sorption data were fitted into Langmuir, Freundlich and Dubinin–Radushkevich isotherms. Of the three adsorption isotherm, the R2 value of Langmuir isotherm model was the highest. Also compared to other isotherms the AARE coefficient for the Langmuir isotherm is low, which indicates favorable sorption. The maximum monolayer coverage (qm) from Langmuir isotherm model was determined to be 19.11 mg/g, the separation factor indicating a favorable sorption experiment is 0.446. Also from Freundlich Isotherm model, the sorption intensity (n) which indicates favorable sorption and the correlation value are 1.84 and 3.79 respectively. The mean free energy was estimated from Dubinin–Radushkevich isotherm model to be 9.18 KJ/mol which clearly proved that the adsorption experiment followed a physical process.


2018 ◽  
Vol 6 (1) ◽  
pp. 44-50
Author(s):  
Matheis F.J.D.P. Tanasale ◽  
Adriani Bandjar ◽  
Natasya Sewit

Chitosan isolated from mushroom (Vollariella volvaceae) as adsorbent of lead (Pb) metal has been done.  The isolation of chitosan was obtained 2.94% from total weight of mushroom.  Fungtional groups of chitin and chitosan were indentified by using FTIR spectrophotometry.  The chitosan had 74.66% degree of deacetylation and 2.09 x 104 g/mol viscosity molecular weight.  The experimental data of the chitosan as adsorbent for Pb metal were correlated with the Langmuir and Freundlich isotherm model.  The maximum adsorption capacity of Pb based on the Langmuir isotherm model was 2.66 mg/g.


2009 ◽  
Vol 620-622 ◽  
pp. 555-558
Author(s):  
Yi Li ◽  
Xue Gang Luo ◽  
Zhao Liu ◽  
Yan Huang ◽  
Xiao Yan Long

The modified valonian tannin was prepared through sulfonated-mannich reaction and used to adsorb Cu (II) from the aqueous solutions. The adsorption capacity rapidly reached equilibrium within 2 hours. The effect of pH on adsorption was apparent, the amount of adsorption increased significantly as the pH increased from 2.0 to 4.0 and then leveled off at pH 4.0-6.0. Equilibrium data fitted well with Freundlich isotherm model compared to Langmuir isotherm model, indicating that adsorption takes place on heterogeneous surface of the modified valonia tannin. The adsorption capacity was increased by increasing initial concentrations. The maximum adsorption capacity of cooper ion was determined to be 56.200 mg/g at 100 mg/L concentration.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2012 ◽  
Vol 9 (4) ◽  
pp. 1823-1834 ◽  
Author(s):  
P. N. Palanisamy ◽  
A. Agalya ◽  
P. Sivakumar

Poly Pyrrle saw dust composite was prepared by reinforcement of natural wood saw dust (obtained fromEuphorbia Tirucalli Lwood) and Poly Pyrrole matrix phase. The present study investigates the adsorption behaviour of Poly Pyrrole Saw dust Composite towards reactive dye. The batch adsorption studies were carried out by varying solution pH, initial dye concentration, contact time and temperature. The kinetic study showed that adsorption of Reactive Red by PPC was best represented by pseudo-second order kinetics with ion exchange adsorption. The equilibrium data were analyzed by Freundlich and Langmuir isotherm model. The equilibrium isotherm data were fitted well with Langmuir isotherm model. The maximum monolayer adsorption capacities calculated by Langmuir model were 204.08 mg/g for Reactive Red at 303 K. The thermodynamic parameters suggest the spontaneous, endothermic nature of ion exchange adsorption with weak Vader walls force of attraction. Activation energy for the adsorption of Reactive by Poly Pyrrole Composite was 11.6387 kJ/mole, Isosteric Heat of adsorption was 48.5454 kJ/mole also supported the ion exchange adsorption process in which forces of attraction between dye molecules and PPC is weak.


2021 ◽  
Author(s):  
Nur Shazwani Abdul Mubarak ◽  
N.N. Bahrudin ◽  
Ali H. Jawad ◽  
B.H. Hameed ◽  
Sumiyyah Sabar

Abstract In this work, sulfonated chitosan montmorillonite composite (S-CS-MT) beads were synthesized using a microwave irradiation method designed to have a better saving-time procedure. The potency of S-CS-MT as an adsorbent was assessed for the removal of cationic dyes such as methylene blue (MB) from aqueous solution. The batch adsorption experiments indicated that MB adsorption onto S-CS-MT follows the Pseudo-second-order kinetic and Langmuir isotherm model. The maximum extent obtained from the Langmuir isotherm model for MB adsorption was 188.2 mg g− 1 at 303 K. The thermodynamic study indicated that the adsorption reaction is favorable and spontaneous. These findings indicated that montmorillonite chitosan grafted with the sulfonate group has the ability and efficacy as biohybrid adsorbent for the adsorption of cationic dyes.


2018 ◽  
Vol 15 (1) ◽  
pp. 6062-6069
Author(s):  
Keon Sang Ryoo

In this study, Chironomus yoshimatsui larvae were applied to remove Ni(II) and Cr(III) ions from wastewater. The sorption studies were carried out using laboratory-reared C. y. larvae. It was found that C. y. larvae are very susceptible to Cr(III) as compared to Ni(II). The survival capacity of C. y. larvae was sharply reduced when exposed to even low Cr(III) concentration. Sorption isotherm and kinetics of C. y. larvae for Ni(II) were determined by means of controlled experiments in a batch system. It was observed that sorpyion efficiency of Ni(II) was largely concentration dependent and more effective at lower concentration. At each equilibrium, Ni(II) was removed up to roughly 44∼80 %. Sorption data were better fitted to the Langmuir isotherm model because of its correlation coefficient R2 value greater than that of the Freundlich isotherm model. The sorption kinetics by C. y. larvae for Ni(II) was well described a pseudo-first-order rate expression. C. y. larvae have enormous potential for application in wastewater treatment technologies because they are widespread and abundant all around the world and can be easily kept in culture.


2011 ◽  
Vol 322 ◽  
pp. 93-97 ◽  
Author(s):  
Min Cong Zhu ◽  
Wei Qi ◽  
Yan Jie Mao ◽  
Yin Hu ◽  
Xin Qing ◽  
...  

In the present work, expanded graphite (EG) was prepared by microwave irradiation. Then, the expanded graphite/polyaniline (EG/PANi) composite was synthesized in the typical method. The samples of EG and EG/PANi were characterized by SEM and IR analysis techniques. Adsorption property of EG/PANi composite for removing the dye, reactive brilliant red K-2BP, from aqueous solution was investigated. The effects of initial dye concentration and contact time, pH, sorbent dosage on the adsorption process were studied. Experimental data were modelled by Langmuir and Freundlich isotherms. Langmuir isotherm model fitted well the equilibrium data for EG/PANi composite comparing to the Freundlich isotherm model. The uptake capacity of EG/PANi for K-2BP was found to be 1.03047 mg/g. The results indicated that EG/PANi composite is not an ideal sorbent used for reactive dye removal.


2007 ◽  
Vol 119 ◽  
pp. 303-306
Author(s):  
Y. Jung ◽  
Jei Won Yeon ◽  
Yeong Keong Ha

We present the preparation and Cu(II) adsorption characteristics of a new and innovative composite which was composed of a carboxymethylated polyethyleneimine (CM-PEI) and an activated carbon with a nanopore less than 2 nm in diameter. In this study, we examined the adsorption phenomena of Cu(II) on the CM-PEI/F400 composite and evaluated the adsorption data using three kinds of isotherm models (Langmuir, Freundlich, and Temkin isotherms). It was found that the adsorption of Cu(II) on the CM-PEI/F400 composite obeys the Langmuir isotherm model. Furthermore, The Cu element mapping results showed that Cu was well distributed throughout all the surface of the composite particle, suggesting that the surface of the F400 particle was uniformly covered with CM-PEI.


Sign in / Sign up

Export Citation Format

Share Document