scholarly journals Isolasi Kitosan Dari Tudung Jamur Merang (Vollvariella Volvaceae) Dan Aplikasinya Sebagai Absorben Logam Timbal (Pb)

2018 ◽  
Vol 6 (1) ◽  
pp. 44-50
Author(s):  
Matheis F.J.D.P. Tanasale ◽  
Adriani Bandjar ◽  
Natasya Sewit

Chitosan isolated from mushroom (Vollariella volvaceae) as adsorbent of lead (Pb) metal has been done.  The isolation of chitosan was obtained 2.94% from total weight of mushroom.  Fungtional groups of chitin and chitosan were indentified by using FTIR spectrophotometry.  The chitosan had 74.66% degree of deacetylation and 2.09 x 104 g/mol viscosity molecular weight.  The experimental data of the chitosan as adsorbent for Pb metal were correlated with the Langmuir and Freundlich isotherm model.  The maximum adsorption capacity of Pb based on the Langmuir isotherm model was 2.66 mg/g.

2009 ◽  
Vol 620-622 ◽  
pp. 555-558
Author(s):  
Yi Li ◽  
Xue Gang Luo ◽  
Zhao Liu ◽  
Yan Huang ◽  
Xiao Yan Long

The modified valonian tannin was prepared through sulfonated-mannich reaction and used to adsorb Cu (II) from the aqueous solutions. The adsorption capacity rapidly reached equilibrium within 2 hours. The effect of pH on adsorption was apparent, the amount of adsorption increased significantly as the pH increased from 2.0 to 4.0 and then leveled off at pH 4.0-6.0. Equilibrium data fitted well with Freundlich isotherm model compared to Langmuir isotherm model, indicating that adsorption takes place on heterogeneous surface of the modified valonia tannin. The adsorption capacity was increased by increasing initial concentrations. The maximum adsorption capacity of cooper ion was determined to be 56.200 mg/g at 100 mg/L concentration.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


2017 ◽  
Vol 76 (9) ◽  
pp. 2526-2534 ◽  
Author(s):  
Meimei Zhou ◽  
Weizhen Tang ◽  
Pingping Luo ◽  
Jiqiang Lyu ◽  
Aixia Chen ◽  
...  

Abstract Ureido-functionalized mesoporous polyvinyl alcohol/silica composite nanofibre membranes were prepared by electrospinning technology and their application for removal of Pb2+ and Cu2+ from wastewater was discussed. The characteristics of the membranes were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption analysis. Results show that the membranes have long fibrous shapes and worm-like mesoporous micromorphologies. Fourier transform infrared spectroscopy confirmed the membranes were successfully functionalized with ureido groups. Pb2+ and Cu2+ adsorption behavior on the membranes followed a pseudo-second-order nonlinear kinetic model with approximately 30 minutes to equilibrium. Pb2+ adsorption was modelled using a Langmuir isotherm model with maximum adsorption capacity of 26.96 mg g−1. However, Cu2+ adsorption was well described by a Freundlich isotherm model with poor adsorption potential due to the tendency to form chelating complexes with several ureido groups. Notably, the membranes were easily regenerated through acid treatment, and maintained adsorption capacity of 91.87% after five regeneration cycles, showing potential for applications in controlling heavy metals-related pollution and metals reuse.


2020 ◽  
Vol 17 (1) ◽  
pp. 6 ◽  
Author(s):  
Hao Liu ◽  
Xueying Wang ◽  
Chaofan Ding ◽  
Yuxue Dai ◽  
Yuanling Sun ◽  
...  

Environmental contextGlyphosate is a highly effective and widely used organophosphorus pesticide, but its residues can harm the environment and human health. We report a carboxylated carbon nanotubes-graphene oxide aerogel that can efficiently remove glyphosate from water. This technology has great application prospects in dealing with water contaminated with glyphosate. AbstractGlyphosate, an organophosphorus pesticide, has received considerable attention in recent years owing to its carcinogenic potency. The technologies that remove glyphosate in the environment, especially in water, are important. In this work, we prepare a carboxylated carbon nanotubes-graphene oxide aerogel (cCNTs-GA) by the freeze-drying method for the adsorption of glyphosate. The prepared aerogel exhibits an ultra-low density (7.30mgcm−3), good morphology and strong mechanical strength. Meanwhile, a NaOH solution (0.5molL−1) is selected as an eluent and the adsorption parameters for the adsorption of glyphosate are optimised. The properties of the adsorbents after multiple repetitions and the adsorption mechanism of the cCNTs-GA are also studied. The results show that the adsorbent can be recycled more than 20 times and maintains a good adsorption performance. The maximum adsorption capacity of glyphosate at pH 3 is calculated from the Langmuir isotherm model (546mgg−1 at the temperature of 298K), and the cCNTs-GA exhibits a high adsorption affinity and adsorption capacity for glyphosate, as determined by the partition coefficient (PC). The pseudo-second-order kinetic model fits well to the dynamic behaviour. The equilibrium adsorption process follows the Langmuir isotherm model and the adsorption process is mainly controlled by the intraparticle diffusion model. Furthermore, thermodynamic analysis indicates that the adsorption of glyphosate on the cCNTs-GA is exothermic and spontaneous. The adsorbent is used to remove glyphosate from waste water and the adsorption capacity of the cCNTs-GA for glyphosate is higher than other adsorbents, which indicates that the developed adsorbent has a great potential application in environmental pollution treatment.


2012 ◽  
Author(s):  
Bassim H. Hameed ◽  
Abdul Rahman Mohamed ◽  
Hui Ying Chong

Kertas kerja ini membincangkan tentang kecekapan penjerap yang lebih murah, iaitu tayar getah terbuang (DRT), dalam menyingkirkan toluena daripada fasa akuas. Penjerapan toluena pada tayar getah terbuang dikaji menggunakan sistem berkelompok pada suhu 25°C dan 30°C. Daripada kajian ini, didapati toluena dapat disingkirkan sehingga 70% dengan menggunakan julat kepekatan awalan antara 50 mg/l hingga 300 mg/l. Dengan menggunakan model keseimbangan terlelurus, iaitu model Langmuir dan Freundlich, keupayaan penjerapan maksimum dapat ditentukan. Daripada data eksperimen, terbukti bahawa walaupun kedua–dua model isoterma Langmuir dan Freundlich boleh menjelaskan data isoterma, tetapi penjerapan toluena pada DRT dapat ditunjukkan dengan lebih baik oleh isoterma Freudlich. Bagi nilai K Freundlich, keupayaan penjerapan ialah 6.6374 mg/l dan 7.7535 mg/l, pada suhu 25°C dan 30°C. Nilai eksponen n Freudlich adalah lebih daripada satu untuk kedua–dua suhu. Kata kunci: Toluena, penjerapan, isoterma, tayar getah terbuang, model isoterma Langmuir, model isoterma Freundlich This paper discusses the effectiveness of a less expensive adsorbent, a discarded rubber tyre (DRT) in removing toluene from aqueuos phase. Adsorption of toluene on a DRT has been studied by using batch system at 25 and 30°C. It was found that up to 70% of toluene was removed for the range of toluene initial concentrations studied between 50–300 mg/l. Using linearized forms of equilibrium models, namely Langmuir and Freundlich models, the maximum adsorptive capacities were determined. It was evident from the experimental data that, although both Langmuir and Freundlich isotherm models could describe the isotherm data, the adsorption of toluene on a DRT was described well by the Freundlich isotherm. For Freundlich K values, sorption capacities were 6.6374 and 7.7535 mg/l at 25 and 30°C, respectively. The values of Freundlich exponent n were greater than one for both temperatures. Key words: Toluene, adsoprtion, isotherms, discarded rubber tyre, Langmuir isotherm model, Freundlich isotherm model


2015 ◽  
Vol 737 ◽  
pp. 622-626
Author(s):  
Shao Hua He ◽  
Dan Wang ◽  
Qing Qiu Kong ◽  
Xi Wu

The adsorption isothermal curve and thermodynamic adsorption of Cd2+ and Pb2+ on modified walnut shell from waster water were investigated using batch technique. The equilibrium adsorption data are fitted to Langmuir and Freundlich isotherm models and the model parameters are evaluated. The Langmuir isotherm model shows a better fit to adsorption data than the Freundlich isotherm model for the sorption of Cd2+ and Pb2+ on modified walnut shell. The maximum adsorption capacity of Cd2+ and Pb2+ by modified walnut shell is found to be 32.68 mg·g-1 and 84.75 mg·g-1 at 298K temperature, respectively. The adsorption processes of Cd2+ and Pb2+ has feasibility and spontaneous nature. Thermodynamic parameters depict the endothermic nature of sorption and the process is spontaneous and favorable.


2016 ◽  
Vol 75 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Qiujin Jia ◽  
Wanting Zhang ◽  
Dongping Li ◽  
Yulong Liu ◽  
Yuju Che ◽  
...  

Hydrazinolyzed cellulose-graft-polymethyl acrylate (Cell-g-PMA-HZ), an efficient adsorbent for removal of Cd(II) and Pb(II) from aqueous solution, has been prepared by ceric salt-initiated graft polymerization of methyl acrylate from microcrystalline cellulose surface and subsequent hydrazinolysis. The influences of initial pH, contact time, and temperature on adsorption capacity of Cell-g-PMA-HZ as well as adsorption equilibrium, kinetic and thermodynamic properties were examined in detail. As for Cd(II) adsorption, kinetic adsorption can be explained by pseudo-second-order, while adsorption isotherm fits well with Langmuir isotherm model, from which maximum equilibrium adsorption capacity can be derived as 235.85 mg g−1 at 28 °C. Further thermodynamic investigation indicated that adsorption of Cd(II) by adsorbent Cell-g-PMA-HZ is endothermic and spontaneous under studied conditions. On the other hand, isotherm of Pb(II) adsorption fits well with Freundlich isotherm model and is more likely to be a physical-adsorption-dominated process. Consecutive adsorption–desorption experiments showed that Cell-g-PMA-HZ is reusable with satisfactory adsorption capacity.


Author(s):  
С.А.А. Ахмед ◽  
Е.С. Гогина

Адсорбция фенола на активированном угле считается одной из наиболее эффективных систем очистки сточных вод. В связи с этим изучена эффективность двух промышленных активированных углей российского производства для очистки сточных вод от фенола. Образцы включают порошкообразный активированный уголь (производимый из березового угля) и дробленый активированный уголь (производимый из скорлупы кокосового ореха). Исследование проведено в условиях изменения pH, влияния времени контакта и различных начальных концентраций фенола на процесс адсорбции. Исследование дополнительно расширено для выяснения кинетики адсорбции и модели изотерм Ленгмюра и Фрейндлиха. Результаты показали, что активированный уголь сохраняет максимальную адсорбционную способность в широком диапазоне pH – от 2 до 9. Это доказывает применимость угля для удаления фенола из различных сточных вод. Механизм адсорбции с использованием обоих образцов активированных углей следовал псевдовторому порядку и соответствовал модели изотермы Ленгмюра. Максимальная адсорбционная способность составила 185,19 и 172,41 мг/г для порошкообразного и дробленого угля соответственно, что свидетельствует о высокой эффективности удаления фенола из сточных вод. The adsorption of phenol on activated carbon is considered one of the most efficient wastewater treatment systems. In this regard, the effectiveness of two Russian manufactured industrial activated carbon types in removing phenol from wastewater has been studied. The samples included powdered activated carbon (made from birch charcoal) and crushed activated carbon (made from coconut shells). The study was carried out under the conditions of pH variation and the effect of contact time and different initial concentrations of phenol on the adsorption process. The study was further expanded to clarify the adsorption kinetics and the Langmuir and Freundlich isotherm model. The results showed that activated carbon retained the maximum adsorption capacity over a wide pH range of 2 to 9. This fact proves the usability of coal for removing phenol from various wastewater types. The adsorption mechanism using both activated carbon samples followed the pseudo-second order and corresponded to the Langmuir isotherm model. The maximum adsorption capacity was 185.19 and 172.41 mg/g for powdered and crushed coal, respectively, suggesting a high efficiency of phenol removal from wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Zhang ◽  
Ru Zheng ◽  
Jiaying Zhao ◽  
Yingchao Zhang ◽  
Po-keung Wong ◽  
...  

In this study, adsorption of zinc onto the adsorbent (untreated rice husk and NaOH-treated rice husk) was examined. During the removal process, batch technique was used, and the effects of pH and contact time were investigated. Langmuir isotherm was applied in order to determine the efficiency of NaOH-treated rice husk used as an adsorbent. The zinc adsorption was fast, and equilibrium was attained within 30 min. The maximum removal ratios of zinc for untreated rice husk and NaOH-treated rice husk after 1.5 h were 52.3% and 95.2%, respectively, with initial zinc concentration of 25 mg/L and optimum pH of 4.0. Data obtained from batch adsorption experiments fitted well with the Langmuir isotherm model. Maximum adsorption capacity of zinc onto untreated rice husk and NaOH-treated rice husk was 12.41 mg/g, and 20.08 mg/g respectively, at adsorbent dosage of 1 g/L at 25°C. The nature of functional groups (i.e., amino, carboxyl, and hydroxyl) and metal ion interactions was examined by the FT-IR technique. It was concluded that the NaOH-treated rice husk had stronger adsorption capacity for Zn2+compared with the untreated rice husk. The NaOH-treated rice husk is an inexpensive and environmentally friendly adsorbent for Zn2+removal from aqueous solutions.


2011 ◽  
Vol 13 (4) ◽  
pp. 84-88 ◽  
Author(s):  
Wan Khalir ◽  
Megat Hanafiah ◽  
Siti So'ad ◽  
Wan Ngah

Adsorption behavior of Pb(II) onto xanthated rubber (Hevea brasiliensis) leaf powder A plant waste, rubber (Hevea brasiliensis) leaf powder was modified with carbon disulfide (xanthation) for the purpose of introducing sulfur groups, and the adsorbent performance in removing Pb(II) ion was evaluated. Pb(II) adsorption was confirmed by spectroscopic analysis, which involved Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The amount of Pb(II) adsorbed increased with increasing pH, contact time and concentration but slightly decreased with increasing ionic strength. Adsorption equilibrium was achieved in less than 60 min and followed the pseudo-second order model. The isotherm data indicated that Pb(II) adsorption on xanthated rubber leaf (XRL) fitted well with Langmuir isotherm model. The maximum adsorption capacity computed from the Langmuir isotherm model was 166.7 mg/g. Pb(II) adsorption occurred via ion-exchange and complexation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document