scholarly journals PENGARUH AKTIVITAS FISIK ANAEROBIK TIAP HARI TERHADAP KADAR HEAT SHOCK PROTEIN (HSP)70 OTOT JANTUNG TIKUS WISTAR

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Masayu Azizah ◽  
Rostika Flora ◽  
Theodoru Theodoru

AbstrakHeat Shock Protein (HSP) merupakan suatu protein yang dihasilkan karena adanya Heat Shock Response (HSR). HSR diperlukan sebagai tanggapan sel terhadap berbagai macam gangguan, baik yang bersifat fisiologis maupun yang berasal dari lingkungan. Peningkatan kadar HSP70 otot jantung ini dikarenakan adanya aktivitas fisik anaerobik. Aktivitas fisik ini mengakibatkan tubuh mengalami peningkatan suhu tubuh, stres panas dan latihan.Tujuan penelitian ini adalah untuk menganalisa pengaruh aktivitas fisik anaerobik yang dilakukan setiap hari terhadap kadar Heat Shock Protein (HSP)70 otot jantung tikus wistar. Berdasarkan hasil penelitian, kelompok anaerobik menunjukkan peningkatan kadar HSP otot jantung dibandingkan kelompok pembanding.Kata kunci : aktivitas fisik anaerobik tiap hari, HSP70, treadmill, tikus rattus novergicus wistar.AbstractHeat Shock Protein (HSP) is a protein that is produced because of the Heat Shock Response (HSR). HSR is required as a response of cells to a variety of disorders, both physiological as well as from the environment. Increased levels of HSP70 heart muscle is due to anaerobic physical activity. Physical activity causes the body to increase body temperature, heat stress and latihan.Tujuan this study is to analyze the influence of anaerobic physical activity performed every day on levels of Heat Shock Protein (HSP) 70 wistar rat cardiac muscle. Based on the results of the study, the group showed increased levels of HSP anaerobic heart muscle than the comparison group.Keywords : anaerobic physical activity every day , HSP70 , body temperature, rattus novergicus wistar rat.

1998 ◽  
Vol 23 (3) ◽  
pp. 245-260 ◽  
Author(s):  
J. Lon Kilgore ◽  
Timothy I. Musch ◽  
Christopher R. Ross

Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might he inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided. Key words: heat shock, protein, exercise


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1574-1574
Author(s):  
Peter M. Voorhees ◽  
Deborah J. Kuhn ◽  
George W. Small ◽  
John S. Strader ◽  
Robert Corringham ◽  
...  

Abstract The proteasome inhibitor bortezomib represents a significant advance in the treatment of multiple myeloma, but its efficacy is limited by a number of resistance mechanisms. One of the most important is the heat shock protein (HSP) and stress response pathways which, through members such as HSP-70 and mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1, oppose the pro-apoptotic activities of bortezomib. Because interleukin (IL)-6 signaling augments the heat shock response through signal transducer and activator of transcription (STAT)-1 and heat shock transcription factor (HSF)-1, we hypothesized that downregulation of IL-6 signaling would attenuate HSP induction by bortezomib, thereby enhancing its anti-myeloma activity. Treatment of the IL-6-dependent multiple myeloma cell lines KAS-6 and ANBL-6 with the combination of bortezomib and CNTO328, a chimeric monoclonal IL-6 neutralizing antibody, resulted in greater reduction of cell viability than with either drug alone in a time- and concentration-dependent manner. This was associated with an enhanced induction of apoptosis which, under some conditions, was greater than the sum of the two individual agents alone, suggesting a synergistic interaction. Similar findings were not seen when using isotype control antibodies, and in studies of the IL-6-independent RPMI 8226 myeloma cell line. Increased activity was seen when cells were pre-treated with CNTO328 followed by bortezomib, or when they were treated with both agents concurrently, compared to treatment with bortezomib followed by CNTO328. Treatment with CNTO328 potently inhibited IL-6-mediated downstream signaling pathways, as demonstrated by marked blockade of STAT-3 and p44/42 MAPK phosphorylation. Enhanced activity of the combination regimen correlated with attenuated induction by bortezomib of the heat shock and stress response proteins HSP-70 and MKP-1 by up to 45% and 90%, respectively. Notably, CNTO328 markedly reduced levels of transcriptionally active phospho-STAT-1 and hyperphosphorylated HSF-1. Other strategies to suppress the heat shock response, including the use of the pharmacologic inhibitor KNK437, also yielded evidence for a synergistic anti-myeloma effect in combination with bortezomib. The synergistic activity of KNK437 and bortezomib was reproduced in normal mouse embryo fibroblasts (MEFs), but blunted in HSF-1 knockout MEFs. Taken together, the above data demonstrate that inhibition of IL-6 signaling enhances the anti-myeloma activity of bortezomib. They also support the hypothesis that this occurs, at least in part, by attenuating proteasome inhibitor-mediated induction of the heat shock response through downregulation of transcriptionally active STAT-1 and HSF-1. These findings provide a strong rationale for future translation of the CNTO328/bortezomib combination into the clinic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Victoria A. Uyanga ◽  
Minghui Wang ◽  
Tian Tong ◽  
Jingpeng Zhao ◽  
Xiaojuan Wang ◽  
...  

Heat stress (HS) adversely affects several physiological responses in organisms, but the underlying molecular mechanisms involved are yet to be fully understood. L-Citrulline (L-Cit) is a nutraceutical amino acid that is gaining research interest for its role in body temperature regulation and nitric oxide synthesis. This study investigated whether dietary supplementation with L-Cit (1% of basal diet) could ameliorate the effects of acute HS on thermotolerance, redox balance, and inflammatory responses of broilers. Ross 308 broilers (288 chicks) were subjected to two environments; thermoneutral at 24°C (TNZ) or HS at 35°C for 5 h, and fed two diets; control or L-Cit. The results showed that HS increased the ear, rectal (RT), and core body (CBT) temperatures of broilers, along with higher respiratory rate. The RT and CBT readings were intermittently affected with time effect, whereas, L-Cit supplementation lowered the mean CBT than the control diet. Antioxidant assays showed that superoxide dismutase was increased during HS, while, catalase was promoted by L-Cit supplementation. In addition, L-Cit induced glutathione peroxidase activity compared to the control diet during HS. Hypothalamic heat shock protein (HSP)-90 was upregulated by HS, but L-Cit downregulated heat shock factor (HSF)-1, and HSP 60 mRNA expressions. HSF 3 mRNA expression was downregulated by L-Cit under TNZ condition. More so, HS increased the plasma nitric oxide (NO) concentration but lowered the total NO synthase (tNOS) activity. In contrast, L-Cit supplementation limited NO production but increased the tNOS activity. Arginase activity was increased in the control fed group during HS but L-Cit supplementation lowered this effect. The NOS-COX pathway was significantly affected under TNZ condition, since L-Cit supplementation downregulated the mRNA expression of iNOS-COX2 in the hypothalamus, and further reduced the serum PGE2 concentration. Together, these data indicates that L-Cit influenced the antioxidant defense, heat shock response and nitric oxide regeneration both under thermoneutral and HS conditions; and that L-Cit may be directly and/or indirectly involved in the central regulation of body temperature.


2015 ◽  
Vol 13 (16) ◽  
pp. 4627-4631 ◽  
Author(s):  
Y. Wang ◽  
S. R. McAlpine

The cellular protection mechanism, the heat shock response, is only activated by classical heat shock 90 inhibitors (Hsp90) that “target” the N-terminus of the protein, but not by those that modulate the C-terminus.


2020 ◽  
Vol 21 (6) ◽  
pp. 2063
Author(s):  
Mooud Amirkavei ◽  
Marja Pitkänen ◽  
Ossi Kaikkonen ◽  
Kai Kaarniranta ◽  
Helder André ◽  
...  

The induction of heat shock response in the macula has been proposed as a useful therapeutic strategy for retinal neurodegenerative diseases by promoting proteostasis and enhancing protective chaperone mechanisms. We applied transpupillary 1064 nm long-duration laser heating to the mouse (C57Bl/6J) fundus to examine the heat shock response in vivo. The intensity and spatial distribution of heat shock protein (HSP) 70 expression along with the concomitant probability for damage were measured 24 h after laser irradiation in the mouse retinal pigment epithelium (RPE) as a function of laser power. Our results show that the range of heating powers for producing heat shock response while avoiding damage in the mouse RPE is narrow. At powers of 64 and 70 mW, HSP70 immunostaining indicates 90 and 100% probability for clearly elevated HSP expression while the corresponding probability for damage is 20 and 33%, respectively. Tunel staining identified the apoptotic regions, and the estimated 50% damaging threshold probability for the heating (ED50) was ~72 mW. The staining with Bestrophin1 (BEST1) demonstrated RPE cell atrophy with the most intense powers. Consequently, fundus heating with a long-duration laser provides an approachable method to develop heat shock-based therapies for the RPE of retinal disease model mice.


Sign in / Sign up

Export Citation Format

Share Document