scholarly journals Nursery Management of Two Major Below-Ground Feeding Plant Pests: Root Mealybug, Rhizoecus sp. and Rice Root Aphid, Rhopalosiphum rufiabdominalis (Sasaki) (Hemiptera: Pseudococcidae and Aphididae)

2021 ◽  
Vol 39 (4) ◽  
pp. 131-137
Author(s):  
Stanton Gill ◽  
Brian Kunkel

Abstract Root mealybug (Rhizoecus sp.) and rice root aphid (Rhopalosiphum rufibdominalis) are below-ground feeding insects that are difficult to control and have become major pests as production of their host plants has grown. Field trials were designed to investigate the impact new insecticides and biopesticides have on root mealybugs and rice root aphids. In our first three trials, we investigated the effects of biopesticides, entomopathogenic nematodes or fungi on reflexed stonecrop (Sedum rupestre) and stonecrop (S. montanum) against root mealybug. We found that flupyradifurone (Altus), flonicamid (Aria), chlorantraniliprole (Acelepryn), pymetrozine (Endeavor), Beauveria bassiana (Mycotrol), Chromobacterium subtsugae (Grandevo), Burkholderia spp. strain A396 (Venerate), cyantraniliprole (Mainspring) and Steinernema carpocapsae (Millenium) significantly reduced root mealybug populations compared to nontreated controls when applied as drenches in a curative manner. In our fourth trial, we evaluated biopesticides and Beauveria bassiana, on rice root aphid feeding on common rush (Juncus effusus) roots. Results showed pymetrozine significantly reduced populations as early as 14 days after treatment and continued to reduce their population throughout the remainder of the trial. However, chlorantraniliprole, cyantraniliprole, Beauveria bassiana, M-306 and MBI-203 did not significantly reduce rice root aphid populations until 28 days after initial application. Predator activity on root balls of Juncus effusus plants was also noted during the trials and may provide an integrated pest management (IPM) approach in controlling populations. Index words: reflexed stonecrop, Sedum rupestre L, stonecrop, Sedum montanum Song. & Perr, common rush, Juncus effuses L, Beauveria bassiana, Mycotrol, Steinernema carpocapsae, Millenium, reduced-risk pesticides, Chromobacterium subtsugae (Grandevo), flupyradifurone, Altus, flonicamid, Aria, chlorantraniliprole, Acelepryn, pymetrozine, Endeavor, Burkholderia spp. strain A396, Venerate, cyantraniliprole, Mainspring, M-306, MBI-203. Chemicals used in this study: flupyradifurone (Altus); flonicamid (Aria); chlorantraniliprole (Acelepryn); cyantraniliprole (Mainspring); pyrometrozine (Endeavor); Burkholderia spp. strain 396 (Venerate); Chromobacterium subtsugae (Grandevo); Beauveria bassiana (Mycotrol); AMBI-203 WDG – 30% Chromobacterium subtsugae strain PRAA4-1T cells and spent fermentation media. EPA registration number 84059-27; MBI-206 EP – 94.46% Heat-killed Burkholderia spp. strain A396 cells and spent fermentation media. EPA registration number 84059-14; MBI-203 SC2 – 98% Chromobacterium subtsugae strain PRAA4-1T cells and spent fermentation media. Experimental; MBI-306 SC1 - 94.46% non-viable Burkholderia spp. strain A396 cells and spent fermentation media. Experimental. Species used in this study: Root mealybug, Rhizoecus sp; Rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki); reflexed stonecrop, Sedum rupestre; stonecrop, Sedum montanum; common rush, Juncus effusus.

2018 ◽  
Vol 28 (4) ◽  
pp. 1281-1284
Author(s):  
Petar Petrov ◽  
Bojan Mitrovski

Due to the great economic significance of the sugar beet, the new production trends are aimed at improving the quantitative and qualitative properties and one of the basic agro technical measures that is directly dependent on the yield and quality of the turnip is the properly conducted plant nutrition. Exporting high quantities of nutrients from the soil, the sugar beet requires application of advanced agro-technology, primarily application of adequate and controlled nutrition and irrigation. Application of this measure, in combination with soil processing, has sustained influence over the following cultures in the crop rotation in terms of nutrients regiment and fight against weeds.In order to determine the effects of mineral fertilizers on sugar beet, field experiment was conducted on fluvisol soil. The experiment is set according to a random block system, following the standard methods of agricultural chemistry for conducting field trials. The experiment includes eight variants, as follows: 1. Control (non-fertilized), 2. NP, 3. NK, 4. PK, 5. NPK, 6. N2PK, 7. N2P2K, 8. N3PK.In the phase of technological maturity of sugar beet, collection of the vegetative material and measurement of the height of the biological yield of the turnips was carried out. Based on the survey results, it can be concluded that the variant N2P2K has achieved the highest yield of swollen roots, i.e. 69.330 kg/ha. The highest yield of leafy greens was achieved in the variant N3PK, i.e. 41.920 kg/ha, which indicates the fact that nitrogen has direct influence over the vegetation mass of sugar beet.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e043807
Author(s):  
Jiantong Shen ◽  
Wenming Feng ◽  
Yike Wang ◽  
Qiyuan Zhao ◽  
Billong Laura Flavorta ◽  
...  

IntroductionEfficacy of aliskiren combination therapy with other antihypertensive has been evaluated in the treatment of patients with hypertension in recent systematic reviews. However, most previous reviews only focused on one single health outcome or one setting, none of them made a full summary that assessed the impact of aliskiren combination treatment comprehensively. As such, this umbrella review based on systematic reviews and meta-analyses is aimed to synthesise the evidences on efficacy, safety and tolerability of aliskiren-based therapy for hypertension and related comorbid patients.Methods and analysisA comprehensive search of PubMed, EMBASE, Cochrane Library, CNKI published from inception to August 2020 will be conducted. The selected articles are systematic reviews which evaluated efficacy, safety and tolerability of aliskiren combination therapy. Two reviewers will screen eligible articles, extract data and evaluate quality independently. Any disputes will be resolved by discussion or the arbitration of a third person. The quality of reporting evidence will be assessed using the Assessment of Multiple Systematic Reviews V.2 tool tool. We will take a mixed-methods approach to synthesising the review literatures, reporting summary of findings tables and iteratively mapping the results.Ethics and disseminationEthical approval is not required for the study, as we would only collect data from available published materials. This umbrella review will be also submitted to a peer-reviewed journal for publication after completion.PROSPERO registration numberCRD42020192131.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Hugo Savill Russell ◽  
Louise Bøge Frederickson ◽  
Ole Hertel ◽  
Thomas Ellermann ◽  
Steen Solvang Jensen

NOx is a pervasive pollutant in urban environments. This review assesses the current state of the art of photocatalytic oxidation materials, designed for the abatement of nitrogen oxides (NOx) in the urban environment, and typically, but not exclusively based on titanium dioxide (TiO2). Field trials with existing commercial materials, such as paints, asphalt and concrete, in a range of environments including street canyons, car parks, tunnels, highways and open streets, are considered in-depth. Lab studies containing the most recent developments in the photocatalytic materials are also summarised, as well as studies investigating the impact of physical parameters on their efficiency. It is concluded that this technology may be useful as a part of the measures used to lower urban air pollution levels, yielding ∼2% NOx removal in the immediate area around the surface, for optimised TiO2, in some cases, but is not capable of the reported high NOx removal efficiencies >20% in outdoor urban environments, and can in some cases lower air quality by releasing hazardous by-products. However, research into new material is ongoing. The reason for the mixed results in the studies reviewed, and massive range of removal efficiencies reported (from negligible and up to >80%) is mainly the large range of testing practices used. Before deployment in individual environments site-specific testing should be performed, and new standards for lab and field testing should be developed. The longevity of the materials and their potential for producing hazardous by-products should also be considered.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michelle T. Fountain ◽  
Amir Badiee ◽  
Sebastian Hemer ◽  
Alvaro Delgado ◽  
Michael Mangan ◽  
...  

Abstract Spotted wing drosophila, Drosophila suzukii, is a serious invasive pest impacting the production of multiple fruit crops, including soft and stone fruits such as strawberries, raspberries and cherries. Effective control is challenging and reliant on integrated pest management which includes the use of an ever decreasing number of approved insecticides. New means to reduce the impact of this pest that can be integrated into control strategies are urgently required. In many production regions, including the UK, soft fruit are typically grown inside tunnels clad with polyethylene based materials. These can be modified to filter specific wavebands of light. We investigated whether targeted spectral modifications to cladding materials that disrupt insect vision could reduce the incidence of D. suzukii. We present a novel approach that starts from a neuroscientific investigation of insect sensory systems and ends with infield testing of new cladding materials inspired by the biological data. We show D. suzukii are predominantly sensitive to wavelengths below 405 nm (ultraviolet) and above 565 nm (orange & red) and that targeted blocking of lower wavebands (up to 430 nm) using light restricting materials reduces pest populations up to 73% in field trials.


2012 ◽  
Vol 9 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
M. Barlett ◽  
K. Zhuang ◽  
R. Mahadevan ◽  
D. Lovley

Abstract. Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.


2011 ◽  
Vol 68 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Deborah Pinheiro Dick ◽  
Simone Benvenuti Leite ◽  
Ricardo Simão Diniz Dalmolin ◽  
Henrique Cesar Almeida ◽  
Heike Knicker

In the last three decades, exotic tree species are being introduced in the natural pastures of the highlands located at the northeastern part of Rio Grande do Sul State (RS), Brazil. This alteration of land use may impart drastic changes in the soil attributes. In this context, this work aimed to evaluate the impact of Pinus taeda afforestation on soil chemical attributes and organic matter (SOM) composition in Leptosols from Campos de Cima da Serra, RS. Soil samples under eight year old (Pi8) and 30 year old (Pi30) Pinus plantations and under native pasture (NP) were studied. Contents of exchangeable cations and of micronutrients and soil pH were determined. The SOM composition was investigated by means of elemental analyses and FTIR spectroscopy. The soil under pasture had a higher content of nutrients and of SOM in comparison to Pinus soils, reflecting the higher input and decomposition rate of the below ground added residue in the grassland environment. The SOM in pasture soils showed a higher content of carbohydrate and of structures derived from microbial metabolism. Besides the depletion of nutrients and of SOM, Pinus afforestation affected the SOM quality: following afforestation, the proportion of chemically recalcitrant structures and of carboxylic groups increased, whereas N-containing groups decreased.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 130
Author(s):  
Gedion Tsegay ◽  
Xiang-Zhou Meng

Globally, there is a serious issue in carbon stock due to high deforestation and the loss of land, limited carbon storage pools in aboveground and underground forests in different regions, and increased carbon emissions to the atmosphere. This review paper highlights the impact of exclosures on above and below ground carbon stocks in biomass as a solution to globally curb carbon emissions. The data has been analyzed dependent on the Intergovernmental Panel on Climate Change (IPCC) guidelines, the Food and Agriculture Organization (FAO) Forest Resource Assessment report (FRA, 2020), and scientific journal publications mostly from the last decade, to show the research results of carbon stock and the impact of exclosures, particularly the challenges of deforestation and erosion of land and opportunities of area exclosures to provide a general outlook for policymakers. Overall, the world’s forest regions are declining, and although the forest loss rate has slowed, it has still not stopped sufficiently because the knowledge and practice of exclosures are limited. The global forest loss and carbon stock have decreased from 7.8 million ha/yr to 4.7 million ha/yr and from 668 gigatons to 662 gigatons respectively due to multiple factors that differ across the regions. However, a move toward natural rehabilitation and exclosures to reduce the emissions of Greenhouse Gas (GHGs) is needed. In the global production of carbon, the exclosure of forests plays an important role, in particular for permanent sinks of carbon.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 61-67 ◽  
Author(s):  
S-Y. Kim ◽  
P.M. Geary

Two species of macrophytes, Baumea articulata and Schoenoplectus mucronatus, were examined for their capacity to remove phosphorus under nutrient-rich conditions. Forty large bucket systems with the two different species growing in two types of substrate received artificial wastewaters for nine months, simulating a constructed wetland (CW) under high loading conditions. Half of the plants growing in the topsoil and gravel substrates were periodically harvested whereas the other half remained intact. Plant tissue and substrate samples were regularly analysed to determine their phosphorus concentrations. With respect to phosphorus uptake and removal, the Schoenoplectus in the topsoil medium performed better than the Baumea. Biomass harvesting enhanced P uptake in the Schoenoplectus, however the effect was not significant enough to make an improvement on the overall P removal, due to the slow recovery of plants and regrowth of biomass after harvesting. From P partitioning, it was found that the topsoil medium was the major P pool, storing most of total P present in the system. Plant parts contributed only minor storage with approximately half of that P stored below ground in the plant roots. The overall net effect of harvesting plant biomass was to only remove less than 5% of total phosphorus present in the system.


2021 ◽  
Author(s):  
Daniele Evelin Alves ◽  
Ole Røgeberg ◽  
Svenn-Erik Mamelund

Abstract Background: Several studies have documented that indigenous groups have been disproportionally hit by previous pandemics, with some exceptions. The objective of this review and meta-analysis is to provide a comprehensive historical overview of pre-COVID impact of influenza on indigenous groups by combining data from the last five influenza pandemics and seasonal influenza up to date. Methods/Principle Findings: The review will include peer-reviewed original studies published in English, Spanish, Portuguese, Swedish, Danish and Norwegian. Records will be identified through systematic literature search in eight databases: Embase, Medline, Cinahl, Web of Science, Academic Search Ultimate, SocIndex, ASSIA and Google Scholar. Results will be summarized narratively and using meta-analytic strategies. Discussion: To our knowledge, there is no systematic review combining historical data on the impact of both seasonal and pandemic influenza on indigenous populations. By summarizing results across indigenous groups in different countries and historical periods, we aim to provide information on how strong the risk for influenza is among indigenous people, and how consistent this risk is across groups, areas and time. Systematic review registration: PROSPERO registration number: CRD42021246391


2021 ◽  
Author(s):  
Xu Tian ◽  
Yan-Fei Jin ◽  
Zhao-Li Zhang ◽  
Hui Chen ◽  
Wei-Qing Chen ◽  
...  

Abstract Background: Enteral immunonutrition (EIN) has been extensively applied in cancer patients, however its role in esophageal cancer (EC) patients receiving esophagectomy remains unclear. We performed this network meta-analysis to investigate the impact of EIN on patients undergoing surgery for EC and further determine the optimal time of applying EIN.Methods: We searched PubMed, EMBASE, Cochrane library, and China National Knowledgement Infrastructure (CNKI) to identify eligible studies. Categorical data was expressed as the odds ratio with 95% confidence interval (CI), and continuous data was expressed as mean difference (MD) with 95% CI. Pair-wise and network meta-analysis was performed to evaluate the impact of EIN on clinical outcomes using RevMan 5.3 and ADDIS V.1.16.8 softwares. The surface under the cumulative ranking curve (SUCRA) was calculated to rank all nutritional regimes.Results: Total 14 studies involving 1071 patients were included. Pair-wise meta-analysis indicated no difference between EIN regardless of the application time and standard EN (SEN), however subgroup analyses found that postoperative EIN was associated with decreased incidence of total infectious complications (OR=0.47; 95%CI=0.26 to 0.84; p=0.01) and pneumonia (OR=0.47; 95%CI=0.25 to 0.90; p=0.02) and shortened LOH (MD=-1.01; 95%CI=-1.44 to -0.57; p<0.001) compared to SEN, which were all supported by network meta-analyses. Ranking probability analysis further indicated that postoperative EIN has the highest probability of being the optimal option in terms of these three outcomes.Conclusions: Postoperative EIN should be preferentially utilized in EC patients undergoing esophagectomy because it has optimal potential of decreasing the risk of total infectious complications and pneumonia and shortening LOH.OSF registration number: 10.17605/OSF.IO/KJ9UY.


Sign in / Sign up

Export Citation Format

Share Document