scholarly journals The Morphotectono-Volcanic of Menoreh-Gajah-Ijo Volcanic Rock In Western Side of Yogyakarta-Indonesia

Author(s):  
Asmoro Widagdo ◽  
Subagyo Pramumijoyo ◽  
Agung Harijoko

Menoreh-Gajah-Ijo have a very distinctive shape, where there are form of circular structure of volcano that is still intact and the other has not been intact. These morphologies are the morphology of the remaining volcanoes formed by tectonics and certain volcanisms. This study was conducted through a series of interpretations of volcanic body distribution, constructing a Slope Map, constructing a Slope Direction Map, constructing an alignment interpretation on satellite imagery and field mapping work. The formation of Menoreh-Gajah-Ijo morphologies are strongly influenced by tectonics and volcanic processes. The process of tectonism that produces the strike-slip fault structures, the normal faults, and the uplift have formed the lineaments of the valleys and hills with various directions patterns. The Menoreh-Gajah-Ijo volcanisms that have occurred form the structure of volcanic remains. Distribution of Menoreh-Gajah-Ijo volcanic rocks form some semicircle structures because of the normal fault structure that has occurred.

Geophysics ◽  
1956 ◽  
Vol 21 (2) ◽  
pp. 368-387 ◽  
Author(s):  
Hans P. Laubscher

Seismic reflections in normal fault zones in the Eastern Venezuelan basin usually appear distorted. Studies of reflections over fault structures delineated by drilling indicate that this is due to the similar effects of two entirely different phenomena: 1. True structural deformation of beds on the downthrown side. 2. Purely seismic distortion of reflections from underneath the fault. Analysis indicates that the structural deformations form an integral part of the fault zone; the purely seismic distortion is caused by passage of the wave through this zone of deformation.


2021 ◽  
Vol 3 (1) ◽  
pp. 40-45
Author(s):  
Asmoro Widagdo ◽  
Aang Panji Permana

The extensional structure as a normal fault could be found in many places at the southern part of Java compressive tectonic regime. The research area is in the eastern part of the South Serayu Mountains. This normal fault structure is the boundary of the South Serayu Mountains at the eastern part with Kulon Progo Tertiary volcanic Mountains. In the field, these normal fault lineament zones create the Bogowonto river as a boundary of two different geological styles. The influence of this structure on the geological dynamic of the South Serayu Mountains and the Kulon Progo Mountains is important to be explained. The study was conducted by measuring and analyzing fault data and lithology that developed in the area around the two basins boundary. The distribution of the Kulon Progo volcanic rocks indicates the presence of the extensional fault structure. The volcanic facies distribution of the volcano is cut and becomes narrow in the west, while the northward is very wide. Normal fault striations analysis on the fault plane along the fault line shows the least stress trending west-northwest that has worked to create North-South normal faults. The fault-controlled by stress with the vertical main compression area. They have worked to create North Northeast-South Southwest (NNE-SSW) normal faults with westward dipping.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50° of slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Basin. A hummocky relief was detected at the eastern margin of Samos Basin probably representing volcanic rocks. The active tectonics characterized by N-S extension is very different from the Neogene tectonics of Samos Island characterized by NE-SW compression. The mainshock and most of the aftershocks of the October 2020 seismic activity occur on the prolongation of the north dipping E-W fault zone at about 12 km depth.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 1012-1041
Author(s):  
Cathy Busby ◽  
Alison Graettinger ◽  
Margarita López Martínez ◽  
Sarah Medynski ◽  
Tina Niemi ◽  
...  

Abstract The Gulf of California is an archetype of continental rupture through transtensional rifting, and exploitation of a thermally weakened arc to produce a rift. Volcanic rocks of central Baja California record the transition from calcalkaline arc magmatism, due to subduction of the Farallon plate (ca. 24–12 Ma), to rift magmatism, related to the opening of the Gulf of California (<12 Ma). In addition, a suite of postsubduction rocks (<12 Ma), referred to as “bajaites,” are enriched in light rare-earth and other incompatible elements (e.g., Ba and Sr). These are further subdivided into high-magnesian andesite (with 50%–58% SiO2 and MgO >4%) and adakite (>56% SiO2 and MgO <3%). The bajaites correlate spatially with a fossil slab imaged under central Baja and are inferred to record postsubduction melting of the slab and subduction-modified mantle by asthenospheric upwelling associated with rifting or slab breakoff. We report on volcanic rocks of all three suites, which surround and underlie the Santa Rosalía sedimentary rift basin. This area represents the western margin of the Guaymas basin, the most magmatically robust segment of the Gulf of California rift, where seafloor spreading occurred in isolation for 3–4 m.y. (starting at 6 Ma) before transtensional pull-apart basins to the north and south ruptured the continental crust. Outcrops of the Santa Rosalía area thus offer the opportunity to understand the magmatic evolution of the Guaymas rift, which has been the focus of numerous oceanographic expeditions. We describe 21 distinct volcanic and hypabyssal map units in the Santa Rosalía area, using field characteristics, petrographic data, and major- and trace-element geochemical data, as well as zircon isotopic data and ten new 40Ar-39Ar ages. Lithofacies include lavas and lava domes, block-and-ash-flow tuffs, ignimbrites, and hypabyssal intrusions (plugs, dikes, and peperites). Calcalkaline volcanic rocks (13.81–10.11 Ma) pass conformably upsection, with no time gap, into volcanic rocks with rift transitional chemistry (9.69–8.84 Ma). The onset of rifting was marked by explosive eruption of silicic ignimbrite (tuff of El Morro), possibly from a caldera, similar to the onset of rifting or accelerated rifting in other parts of the Gulf of California. Epsilon Hf zircon data are consistent with a rift transitional setting for the tuff of El Morro. Arc and rift volcanic rocks were then juxtaposed by normal faults and tilted eastward toward a north-south fault that lay offshore, likely related to the north-south normal faults documented for the early history of the Guaymas basin, prior to the onset of northwest-southeast transtenional faulting. Magmatism in the Santa Rosalía area resumed with emplacement of high-magnesian andesite lavas and intrusions, at 6.06 Ma ± 0.27 Ma, coeval with the onset of seafloor spreading in the Guaymas basin at ca. 6 Ma. The 9.69–8.84 Ma rift transitional volcanic rocks underlying the Santa Rosalía sedimentary basin provide a maximum age on its basal fill. Evaporites in the Santa Rosalía sedimentary basin formed on the margin of the Guaymas basin, where thicker evaporites formed. Overlying coarse-grained clastic sedimentary fill of the Santa Rosalía basin and its stratiform Cu-Co-Zn-Mn sulfides may have accumulated rapidly, coeval with emplacement of 6.06 Ma high-magnesian andesite intrusions and the ca. 6 Ma onset of seafloor spreading in the Guaymas basin.


1983 ◽  
Vol 20 (9) ◽  
pp. 1355-1373 ◽  
Author(s):  
Erich Dimroth ◽  
Lazlo Imreh ◽  
Normand Goulet ◽  
Michel Rocheleau

In this paper, we describe the relations between the paleogeographic and tectonic evolution of the southwestern part of the Archean Abitibi and Bellecombe belts. Volcanism in the Abitibi Belt created a very thick, anisotropic plate composed of competent volcanic rocks and broken by the Duparquet–Destor break. The depocenters of the upper division of diverse volcanic rocks subsided about 10 km relative to their surroundings, and some central volcanic complexes within this division were consolidated by synvolcanic plutons and their thermal metamorphic aureole. The Cadillac break, a normal fault, separated the Abitibi and Bellecombe belts. The latter consisted of comparatively incompetent sedimentary rocks on top of a basement composed of ultramafic–mafic flows.North–south compression of the volcanic terrain during the Kenoran Orogeny produced a set of flexure folds, F1, that curve around the consolidated cores of central volcanic complexes generally in an easterly direction. Synclinoria nucleated at the deeply subsident depocenters of the upper diverse division. Further north–south flattening and subvertical stretching produced the east-trending F2 folds, their axial-plane schistosity S2, and local superposed schistosities S3 and S4. Southward verging recumbent folds suggest that the Bellecombe Belt simultaneously was pulled northward below the Abitibi Belt. During the orogeny, the Duparquet–Destor and Cadillac breaks were transformed to thrust faults; the Duparquet–Destor break also shows minor (< 3 km) right-lateral strike slip. Diapiric rise of late- to post-kinematic plutons locally distorted earlier schistosities.


2004 ◽  
Vol 52 (3) ◽  
pp. 215-233 ◽  
Author(s):  
Glen S. Stockmal ◽  
Art Slingsby ◽  
John W.F. Waldron

Abstract Recent hydrocarbon exploration in western Newfoundland has resulted in six new wells in the Port au Port Peninsula area. Port au Port No.1, drilled in 1994/95, penetrated the Cambro-Ordovician platform and underlying Grenville basement in the hanging wall of the southeast-dipping Round Head Thrust, terminated in the platform succession in the footwall of this basement-involved inversion structure, and discovered the Garden Hill petroleum pool. The most recent well, Shoal Point K-39, was drilled in 1999 to test a model in which the Round Head Thrust loses reverse displacement to the northeast, eventually becoming a normal fault. This model hinged on an interpretation of a seismic reflection survey acquired in 1996 in Port au Port Bay. This survey is now in the public domain. In our interpretation of these data, the Round Head Thrust is associated with another basement-involved feature, the northwest-dipping Piccadilly Bay Fault, which is mapped on Port au Port Peninsula. Active as normal faults in the Taconian foreland, both these faults were later inverted during Acadian orogenesis. The present reverse offset on the Piccadilly Bay Fault was previously interpreted as normal offset on the southeast-dipping Round Head Thrust. Our new interpretation is consistent with mapping on Port au Port Peninsula and north of Stephenville, where all basement-involved faults are inverted and display reverse senses of motion. It also explains spatially restricted, enigmatic reflections adjacent to the faults as carbonate conglomerates of the Cape Cormorant Formation or Daniel’s Harbour Member, units associated with inverted thick-skinned faults. The K-39 well, which targeted the footwall of the Round Head Thrust, actually penetrated the hanging wall of the Piccadilly Bay Fault. This distinction is important because the reservoir model invoked for this play involved preferential karstification and subsequent dolomitization in the footwalls of inverted thick-skinned faults. The apparent magnitude of structural inversion across the Piccadilly Bay Fault suggests other possible structural plays to the northeast of K-39.


1998 ◽  
Vol 35 (5) ◽  
pp. 495-503 ◽  
Author(s):  
Stephen S Harlan ◽  
Ernest M Duebendorfer ◽  
Jack E Deibert

New 40Ar/39Ar dates on volcanic rocks interlayered with synextensional Miocene sedimentary rocks in the western Lake Mead area and southern end of the Las Vegas Range provide tight constraints on magmatism, basin formation, and extensional deformation in the Basin and Range province of southern Nevada. Vertical axis rotations associated with movement along the Las Vegas Valley shear zone occurred after 15.67 ± 0.10 Ma (2 sigma ), based on a 40Ar/39Ar date from a tuff in the Gass Peak formation in the southern Las Vegas Range. Basaltic magmatism in the western Lake Mead area began as early as 13.28 ± 0.09 Ma, based on a date from a basalt flow in the Lovell Wash Member of the Horse Spring Formation. Isotopic dating of a basalt from the volcanic rocks of Callville Mesa indicates that these rocks are as old as 11.41 ± 0.14 Ma, suggesting that volcanic activity began shortly after formation of the Boulder basin, the extensional basin in which the informally named red sandstone unit was deposited. The red sandstone unit is at least as old as 11.70 ± 0.08 Ma and contains megabreccia deposits younger than 12.93 ± 0.10 Ma. This result shows that formation of the Boulder basin was associated with development of topographic relief that was probably generated by movement along the Saddle Island low-angle normal fault. Stratal tilting associated with extension occurred both prior to and after 11.5 Ma.


2004 ◽  
Vol 141 (1) ◽  
pp. 63-79 ◽  
Author(s):  
ERDİN BOZKURT ◽  
HASAN SÖZBİLİR

Western Turkey is one of the most spectacular regions of widespread active continental extension in the world. The most prominent structures of this region are E–W-trending grabens (e.g. Gediz and Büyük Menderes grabens) and intervening horsts, exposing the Menderes Massif. This paper documents the result of a recent field campaign (field geological mapping and structural analysis) along the southern margin of the modern Gediz Graben of Pliocene (∼ 5 Ma) age. This work provides field evidence that the presently low-angle ductile-brittle detachment fault is cut and displaced by the high-angle graben-bounding normal faults with total displacement exceeding 2.0 km. The evolution of the N–S extension along the Gediz Graben occurred during two episodes, each characterized by a distinct structural styles: (1) rapid exhumation of Menderes Massif in the footwall of low-angle normal fault (core-complex mode) during the Miocene; (2) late stretching of crust producing E–W grabens along high-angle normal faults (rift mode) during Pliocene–Quaternary times, separated by a short-time gap. The later phase is characterized by the deposition of now nearly horizontal sediments of Pliocene age in the hanging walls of the high-angle normal faults and present-day graben floor sediments. The evolution of extension is at variance with orogenic collapse and/or back-arc extension followed by the combined effect of tectonic escape and subduction rollback processes along the Aegean-Cyprean subduction zone. Consequently, it is misleading to describe the Miocene sediments exhumed on shoulders of the Gediz Graben as simple graben fill.


2008 ◽  
Vol 45 (8) ◽  
pp. 871-878
Author(s):  
I. K. Pitcairn ◽  
N. T. Arndt

The Kidd–Munro assemblage, Abitibi belt, Canada, is an ultramafic–mafic–felsic volcanic sequence that contains the giant Kidd Creek volcanic-hosted massive sulfide (VMS) deposit. The Kidd basin, 1.6 km northeast of the deposit, contains pervasively brecciated pillowed and massive basalts. The breccia is distinctly different from most breccias in volcanic rocks, which form through volcanic processes or during later deformation or alteration. The Kidd Creek breccia occurs pervasively through otherwise undeformed pillow interiors and margins, and also in localized corridors of particularly intense brecciation. Clasts are angular, up to 4 cm wide, hosted in a very fine-grained matrix, and commonly show jig-saw fit texture. The chemical compositions of the breccia fragments and matrix are generally similar, although the matrix is slightly enriched in high field-strength elements (HFSE) and heavy rare-earth elements (HREE) and depleted in some mobile elements, such as Rb and Ba. The breccia contains altered basaltic clasts and fragments of in-filled amygdales and is crosscut by late-stage quartz–carbonate–sulfide veins. The observations imply that the breccia was formed in-situ, with minimal transport of material, and developed after solidification of the volcanic rocks. In-situ breccias, such as these, are known to form proximal to major fault zones, but no such structure occurs in the vicinity of the Kidd Basin. We suggest the brecciation was caused by the propagation of shock waves from explosive volcanic eruption, perhaps related to the emplacement of felsic volcanic rocks observed in the Kidd Creek Mine. The breccia was subject to enhanced hydrothermal fluid flow, perhaps linked to the formation of the ore deposit.


Sign in / Sign up

Export Citation Format

Share Document