scholarly journals Diatom species composition in the in situ diet of the placer oyster Crassostrea corteziensis in an estuarine system

2019 ◽  
Vol 29 (3) ◽  
pp. 109-127
Author(s):  
Oscar Ubisha Hernández Almeida ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Markéta Mejdová ◽  
Jiří Dušek ◽  
Lenka Foltýnová ◽  
Lenka Macálková ◽  
Hana Čížková

AbstractThe study estimates the parameters of the photosynthesis–irradiance relationship (PN/I) of a sedge-grass marsh (Czech Republic, Europe), represented as an active “green” surface—a hypothetical “big-leaf”. Photosynthetic parameters of the “big-leaf” are based on in situ measurements of the leaf PN/I curves of the dominant plant species. The non-rectangular hyperbola was selected as the best model for fitting the PN/I relationships. The plant species had different parameters of this relationship. The highest light-saturated rate of photosynthesis (Asat) was recorded for Glyceria maxima and Acorus calamus followed by Carex acuta and Phalaris arundinacea. The lowest Asat was recorded for Calamagrostis canescens. The parameters of the PN/I relationship were calculated also for different growth periods. The highest Asat was calculated for the spring period followed by the summer and autumn periods. The effect of the species composition of the local plant community on the photosynthetic parameters of the “big-leaf” was addressed by introducing both real (recorded) and hypothetical species compositions corresponding to “wet” and “dry” hydrological conditions. We can conclude that the species composition (or diversity) is essential for reaching a high Asat of the “big-leaf ”representing the sedge-grass marsh in different growth periods.


2007 ◽  
Vol 19 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Niek J.M. Gremmen ◽  
Bart van de Vijver ◽  
Yves Frenot ◽  
Marc Lebouvier

Altitudinal gradients provide excellent opportunities to study relationships between species distribution and climatic variables. We studied the species composition of 39 samples of moss-inhabiting diatoms, collected at 50 m intervals from 100–650 m above sea level. The samples contained a total of 130 diatom species, of which 51 occurred in 10 or more samples. Altitude appeared to be the most important variable explaining variation in species composition. Of the 51 common species, 33 showed a significant relationship with altitude. Although the majority of the latter declined with increasing altitude, for nine species the probability of occurrence first increased with increasing elevation, but decreased again at higher altitudes, and four species increased systematically with elevation. As a result, expected species richness per sample decreased from an estimated 43 at 100 m to 25 species per sample at 650 m. Diatom distribution patterns proved to be suitable predictors of the altitudinal position of sample sites. Cross-validation yielded a strong relationship between predicted and observed altitudes.


2019 ◽  
Vol 11 (17) ◽  
pp. 2001 ◽  
Author(s):  
Qing Zhu ◽  
Fang Shen ◽  
Pei Shang ◽  
Yanqun Pan ◽  
Mengyu Li

Phytoplankton species composition research is key to understanding phytoplankton ecological and biogeochemical functions. Hyperspectral optical sensor technology allows us to obtain detailed information about phytoplankton species composition. In the present study, a transfer learning method to inverse phytoplankton species composition using in situ hyperspectral remote sensing reflectance and hyperspectral satellite imagery was presented. By transferring the general knowledge learned from the first few layers of a deep neural network (DNN) trained by a general simulation dataset, and updating the last few layers with an in situ dataset, the requirement for large numbers of in situ samples for training the DNN to predict phytoplankton species composition in natural waters was lowered. This method was established from in situ datasets and validated with datasets collected in different ocean regions in China with considerable accuracy (R2 = 0.88, mean absolute percentage error (MAPE) = 26.08%). Application of the method to Hyperspectral Imager for the Coastal Ocean (HICO) imagery showed that spatial distributions of dominant phytoplankton species and associated compositions could be derived. These results indicated the feasibility of species composition inversion from hyperspectral remote sensing, highlighting the advantages of transfer learning algorithms, which can bring broader application prospects for phytoplankton species composition and phytoplankton functional type research.


2016 ◽  
Vol 283 (1844) ◽  
pp. 20161409 ◽  
Author(s):  
Jonathan N. Pruitt ◽  
Daniel I. Bolnick ◽  
Andrew Sih ◽  
Nicholas DiRienzo ◽  
Noa Pinter-Wollman

Trait-based ecology argues that an understanding of the traits of interactors can enhance the predictability of ecological outcomes. We examine here whether the multidimensional behavioural-trait diversity of communities influences community performance and stability in situ . We created experimental communities of web-building spiders, each with an identical species composition. Communities contained one individual of each of five different species. Prior to establishing these communities in the field, we examined three behavioural traits for each individual spider. These behavioural measures allowed us to estimate community-wide behavioural diversity, as inferred by the multidimensional behavioural volume occupied by the entire community. Communities that occupied a larger region of behavioural-trait space (i.e. where spiders differed more from each other behaviourally) gained more mass and were less likely to disband. Thus, there is a community-wide benefit to multidimensional behavioural diversity in this system that might translate to other multispecies assemblages.


Hydrobiologia ◽  
1989 ◽  
Vol 185 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Deanna K. Vinson ◽  
Samuel R. Rushforth

2018 ◽  
Author(s):  
Manab Kumar Dutta ◽  
Sanjeev Kumar ◽  
Rupa Mukherjee ◽  
Prasun Sanyal ◽  
Sandip Mukhopadhyay

Abstract. The different aspects of carbon biogeochemistry were studied during the postmonsoon at the Hooghly-Sundarbans estuarine system, a part of the Ganga-Brahmaputra river system located in the northeastern India. The study focused on understanding the differences in carbon biogeochemistry of estuaries undergoing different levels of anthropogenic stress by investigating anthropogenically influenced Hooghly estuary and mangrove-dominated estuaries of the Sundarbans. The salinity of well oxygenated (%DO: 91–104 %) estuaries of the Sundarbans varied over a narrow range (12.74–16.69) during postmonsoon relative to the Hooghly (0.04–10.37). Phytoplankton productivity and carbonate precipitation and/or dissolution were dominant processes controlling DIC dynamics in different parts of the Hooghly, whereas signal for mangrove derived DIC removal was observed in the Sundarbans. Influence of groundwater on estuarine DIC biogeochemistry was also observed in both the estuaries with relatively higher influence at the Hooghly than Sundarbans. In both estuarine systems, DOC behaved non-conservatively with ~ 40 % higher DOC level in the Hooghly compared to the Sundarbans. No significant evidence of phytoplankton production on DOC level was found in these estuaries, however signal of DOC input through pore-water exchange at the Sundarbans was observed. Relatively lower δ13CPOC at the Hooghly compared to the Sundarbans suggest relatively higher terrestrial influence at the Hooghly with a possibility of in situ biogeochemical modifications of POC at the Sundarbans. The freshwater run-off coupled with in situ aerobic OC mineralization controlled estuarine pCO2 level at the Hooghly, whereas the same was principally exogenous for the Sundarbans. The entire Hooghly-Sundarbans system acted as source of CO2 to the regional atmosphere with ~ 17 times higher emission from the Hooghly compared to Sundarbans. The present study clearly establishes the dominance of anthropogenically influenced estuary over relatively pristine mangrove dominated one in the regional greenhouse gas budget and climate change perspective.


2007 ◽  
Vol 4 (6) ◽  
pp. 4385-4410 ◽  
Author(s):  
J. K. Egge ◽  
T. F. Thingstad ◽  
A. Engel ◽  
R. G. J. Bellerby ◽  
U. Riebesell

Abstract. Mesocosms experiments (PeECE II and PeECE III) were carried out in 9 transparent mesocosms. Prior to the experimental period, the seawater carbonate system was manipulated to achieve three different levels of CO2. At the onset of the experimental period, nutrients were added to all mesocosms in order to initiate phytoplankton blooms. Rates of primary production were measured by in-situ incubations using 14C-incorporation and oxygen production/consumption. Particulate primary production by 14C was also size fractionated and compared with phytoplankton species composition. Nutrient supply increased the primary production rates, and a net autotrophic phase with 14C-fixation rates up to 4 times higher than initial was observed midway through the 24 days experiment before net community production returned to near-zero and 14C-fixation rates relaxed back to lower than initial. We found a trend in the 14C-based measurements towards higher cumulative primary production at higher pCO2, consistent with recently published results for DIC removal (Riebesell et al., 2007). There where found differences to the size fractionated primary production response to CO2 treatments. The plankton composition changes throughout the bloom, however, resulted in no significant response until the final phase of the experiment where phytoplankton growth became nutrient limited, and phytoplankton community changed from diatom to flagellate dominance. This opens for the two alternative hypotheses that such an effect is associated with mineral nutrient limited growth, and/or with phytoplankton species composition. The lack of a clear net heterotrophic phase in the last part of the experiment supports the idea that a substantial part of production in the upper layer was not degraded locally, but either accumulated there or was exported vertically.


Author(s):  
Ts. Bukhchuluun

A total of 32 diatom species were recorded in Avarga Toson Lake. Motile diatom species are dominatingin diatom communities. The species composition of two coexisted lakes is markedly different. Diatom richness, speciescomposition, and dominant species indicate that Burd lake is polluted by livestock grazing or domestic pollution, andToson Lake is polluted by human activities with high sediment accumulation at the bottom.


Sign in / Sign up

Export Citation Format

Share Document