scholarly journals Effect of The Ethylene Inhibitor “Agno3”, Vitamin B9 “Folic Acid” And Thiol Compound “GSH” On in Vitro Propagation of Sideritis Syriaca L. Subsp. Syriaca (Hellenic Mountain Tea of The Crete Island)

2019 ◽  
Vol 8 ◽  
pp. 1086-1103
Author(s):  
Virginia Sarropoulou ◽  
Eleni Maloupa

The aim of this research was to study the effect of the ethylene inhibitor “silver nitrate (AgNO3)” and vitamin B9 "folic acid" in different concentrations combined with cytokinin BA as well as the antioxidant thiol compound “L-glutathione reduced (GSH)” in different concentrations simultaneously with auxins (IBA+NAA) on micropropagation efficiency of the endemic Sideritis syriaca L. subsp. syriaca (Hellenic mountain tea of Crete/ Malotira) using shoot tip explants. The culture medium used was the MS supplemented with 30 g/l sucrose. The simultaneous application 5 ?M AgNO3 + 2.2 ?M BA promoted best the initial shoot induction stage exhibiting 4.5 shoots/ explant and 100% shoot multiplication (5 weeks). Folic acid applied at 0.25 mg/l in combination with 0.5 mg/l BA exhibited the highest shoot multiplication percentage (90%) (4 weeks). GSH at 10 ?M with 10.7 ?M NAA + 4.92 ?M IBA gave the greatest root length (13.68 mm), at 25 ?M caused a 3-fold increase in rooting (90%) and 250 ?M GSH raised by 20% shoot multiplication (80%). An 89% final survival rate of rooted microplants to ex vitro unheated greenhouse conditions was recorded within 8 weeks period during mid-late spring. Thus, the acclimatization and hardening process was successfully completed.

2019 ◽  
Author(s):  
Robert M. Cabrera ◽  
Jaclyn P. Souder ◽  
John W. Steele ◽  
Lythou Yeo ◽  
Gabriel Tukeman ◽  
...  

ABSTRACTHuman immunodeficiency virus (HIV) integrase inhibitors are increasingly being used for antiretroviral therapy (ART), and dolutegravir (DTG/Tivicay) has emerged as a leading core agent. In 2018, the Tsepamo study reported a 6- to 9-fold increase for neural tube defect (NTD) risk among the offspring of mothers receiving DTG during early gestation. Maternal folate (vitamin B9) status is the largest known modifier of NTD risk, so we evaluated folate-related mechanisms of action and the critical period for DTG developmental toxicity. Folate receptor (FOLR1) binding studies indicate DTG is a non-competitive FOLR1 antagonist at therapeutic concentrations.In vitrotesting indicates calcium (2mM) increases FOLR1-folate interactions and alters DTG-FOLR1-folate interactions and cytotoxicity. DTG does not inhibit downstream folate metabolism by dihydrofolate reductase (DHFR). Early embryonic exposure to DTG is developmentally toxic in zebrafish, and supplemental folic acid can mitigate DTG developmental toxicity. The results from these studies are expected to inform and guide future animal models and clinical studies of DTG-based ART in women of childbearing age.


1976 ◽  
Vol 35 (02) ◽  
pp. 350-357 ◽  
Author(s):  
Hana Bessler ◽  
Galila Agam ◽  
Meir Djaldetti

SummaryA three-fold increase of protein synthesis by human platelets during in vitro phagocytosis of polystyrene latex particles was detected. During the first two hours of incubation, the percentage of phagocytizing platelets and the number of latex particles per platelet increased; by the end of the third hour, the first parameter remained stable, while the number of latex particles per cell had decreased.Vincristine (20 μg/ml of cell suspension) inhibited platelet protein synthesis. This effect was both time- and dose-dependent. The drug also caused a decrease in the number of phagocytizing cells, as well as in their phagocytotic activity.


1994 ◽  
Vol 72 (05) ◽  
pp. 685-692 ◽  
Author(s):  
Michael T Nurmohamed ◽  
René J Berckmans ◽  
Willy M Morriën-Salomons ◽  
Fenny Berends ◽  
Daan W Hommes ◽  
...  

SummaryBackground. Recombinant hirudin (RH) is a new anticoagulant for prophylaxis and treatment of venous and arterial thrombosis. To which extent the activated partial thromboplastin time (APTT) is suitable for monitoring of RH has not been properly evaluated. Recently, a capillary whole blood device was developed for bed-side monitoring of the APTT and it was demonstrated that this device was suitable to monitor heparin therapy. However, monitoring of RH was not evaluated.Study Objectives. To evaluate in vitro and ex vivo the responsiveness and reproducibility for hirudin monitoring of the whole blood monitor and of plasma APTT assays, which were performed with several reagents and two conventional coagulometers.Results. Large interindividual differences in hirudin responsiveness were noted in both the in vitro and the ex vivo experiments. The relationship between the APTT, expressed as clotting time or ratio of initial and prolonged APTT, and the hirudin concentration was nonlinear. A 1.5-fold increase of the clotting times was obtained at 150-200 ng/ml plasma. However, only a 2-fold increase was obtained at hirudin levels varying from 300 ng to more than 750 ng RH/ml plasma regardless of the assays. The relationship linearized upon logarithmic conversion of the ratio and the hirudin concentration. Disregarding the interindividual differences, and presuming full linearity of the relationship, all combinations were equally responsive to hirudin.Conclusions. All assays were equally responsive to hirudin. Levels up to 300 ng/ml plasma can be reliably estimated with each assay. The manual device may be preferable in situations where rapid availability of test results is necessary.


2007 ◽  
Vol 30 (4) ◽  
pp. 96
Author(s):  
Michael R. Ward ◽  
Qiuwang Zhang ◽  
Duncan J. Stewart ◽  
Michael J.B. Kutryk

Autologous endothelial progenitor cells (EPCs) have been used extensively in the development of cell-based therapy for acute MI. However, EPCs isolated from patients with CAD and/or CAD risk factors have reduced regenerative activity compared to cells from healthy subjects. As in endothelial cells, endothelial NO synthase (eNOS) expression and subsequent NO production are believed to be critical determinants of EPC function. Recently, the ability of EPCs to migrate in vitro in response to chemotactic stimuli has been shown to predict their regenerative capacity in clinical studies. Therefore, we hypothesized that the regenerative function of EPCs from patients with or at high risk for CAD will be enhanced by overexpression of eNOS, as assessed by migratory capacity. Methods: EPCs were isolated from the blood of human subjects with CAD risk factors (>15% Framingham risk score; FRS) (± CAD) by Ficoll gradient separation and differential culture. Following 3 days in culture, cells were transduced using lentivirus vectors containing either eNOS or GFP (sham) at an MOI of 3. The cells were cultured for an additional 5 days before being used in functional assays. Cell migration and chemotaxis in response to VEGF (50 ng/mL) and SDF-1 (100 ng/mL) were assessed using a modified Boyden Chamber assay. Results: Transduction at an MOI of 3 led to a ~90-100-fold increase in eNOS mRNA expression and a 5-6 fold increase in eNOS protein expression, as assessed by qRT-PCR and Western Blotting. Moreover, there was a significant improvement in the migration of EPCs following eNOS transduction compared to sham-transduced EPCs in response to both VEGF (44.3 ± 8.4 vs. 31.1 ± 4.6 cells/high power field; n=10, p < 0.05) and SDF-1 (51.9 ± 11.1 vs. 34.5 ± 3.3 cells/HPF; n=10, p < 0.05). Conclusions: These data show that the reduced migration capacity of EPCs isolated from patients with CAD and/or CAD risk factors can be significantly improved through eNOS overexpression in these cells. Thus, eNOS transduction of autologous EPCs may enhance their ability to restore myocardial perfusion and function following acute MI. We intend to further explore the regenerative potential of eNOS-transduced EPCs using various in vitro and in vivo models.


2020 ◽  
Vol 21 (5) ◽  
pp. 438-450
Author(s):  
Ramya Ramchandran ◽  
Swetha Ramesh ◽  
Anviksha A ◽  
RamLal Thakur ◽  
Arunaloke Chakrabarti ◽  
...  

Background:: Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media. Methods:: In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions. Results:: To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide’s clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml. Conclusion:: With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.


2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2019 ◽  
Vol 9 (2) ◽  
pp. 166-172
Author(s):  
Ahmed A.G. El-Shahawy ◽  
Gamal Elghnam ◽  
Alsayed A.M. Alsherbini

Background:Gold and Iron Oxide nanoparticles NPs play as nanocarriers for a specific drug delivery and contrast agents. Intercellular uptake of these nanoparticles and targeting to individual cell and sub-cellular compartment is essential.Objective:The aim of the current study is to evaluate the intracellular uptake of these NPs to specific tumor cells in vitro conjugated with folic acid with a goal of enhancing the efficiency of specific targeting to tumor cells.Methods:We synthesized the nanoparticles by a chemical method and characterized by UV-Visible, FTIR, XRD, and TEM.Results & Conclusion:The results revealed the conjugation of Gold and Iron Oxide nanoparticles with folic acid increased the intercellular uptake with high percent compared to non- conjugated nanoparticles.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3229
Author(s):  
Mat Yunus Najhah ◽  
Hawa Z. E. Jaafar ◽  
Jaafar Juju Nakasha ◽  
Mansor Hakiman

This study aims to investigate whether the in vitro-cultured L. pumila var. alata has higher antioxidant activity than its wild plant. An 8-week-old L. pumila var. alata nodal segment and leaf explants were cultured onto Murashige and Skoog (MS) medium supplemented with various cytokinins (zeatin, kinetin, and 6-benzylaminopurine (BAP)) for shoot multiplication and auxins (2,4-dichlorophenoxyacetic acid (2,4-D) and picloram) for callus induction, respectively. The results showed that 2 mg/L zeatin produced the optimal results for shoot and leaf development, and 0.5 mg/L 2,4-D produced the highest callus induction results (60%). After this, 0.5 mg/L 2,4-D was combined with 0.25 mg/L cytokinins and supplemented to the MS medium. The optimal results for callus induction (100%) with yellowish to greenish and compact texture were obtained using 0.5 mg/L 2,4-D combined with 0.25 mg/L zeatin. Leaves obtained from in vitro plantlets and wild plants as well as callus were extracted and analyzed for their antioxidant activities (DPPH and FRAP methods) and polyphenolic properties (total flavonoid and total phenolic content). When compared with leaf extracts of in vitro plantlets and wild plants of L. pumila var. alata, the callus extract displayed significantly higher antioxidant activities and total phenolic and flavonoid content. Hence, callus culture potentially can be adapted for antioxidant and polyphenolic production to satisfy pharmaceutical and nutraceutical needs while conserving wild L. pumila var. alata.


Sign in / Sign up

Export Citation Format

Share Document