scholarly journals EFFECT OF MYCORRHIZA INOCULATION OF PEPPER SEEDLINGS (Capsicum annuum L.) ON THE GROWTH AND PROTECTION AGAINST Fusarium oxysporum INFECTION

2019 ◽  
Vol 18 (1) ◽  
pp. 161-169
Author(s):  
Agnieszka Jamiołkowska ◽  
Władysław Michałek

A study was conducted to investigate the ability of arbuscular mycorrhizal fungi (AMF) in enhancing the growth and control of a root rot caused by different isolates of Fusarium oxysporum in sweet pepper seedlings. The plants were grown in plastic pots filled with sterilized horticultural soils. There were four treatments applied as follows: Fo (seedlings infected with fungus), M (seedlings inoculated with mycorrhizal fungi), Fo + M (seedlings inoculated with mycorrhiza and infected with fungus) and control. A randomized experiment was used and the growth, disease index, and photosynthetic activity of the plants were measured after 4 weeks. The investigations showed that the mycorrhizal inoculation had a protective effect on the F. oxysporum-infected pepper seedlings. The plants were characterized by a higher growth rate and a lower disease index than those growing only in the presence of the pathogenic fungus. The roots inoculated with mycorrhizal fungi were better developed than those infected only with F. oxysporum. The mycorrhiza contributed to an increase in the photosynthetic activity of the pepper seedlings.

2021 ◽  
Vol 13 (3) ◽  
pp. 1226
Author(s):  
Ana Cruz-Silva ◽  
Andreia Figueiredo ◽  
Mónica Sebastiana

Grapevine (Vitis vinifera L.), widely used for berry and wine production, is highly susceptible to the pathogenic oomycete Plasmopara viticola, the etiological agent of grapevine downy mildew disease. The method commonly used to prevent and control P. viticola infection relies on multiple applications of chemical fungicides. However, with European Union goals to lower the usage of such chemicals in viticulture there is a need to develop new and more sustainable strategies. The use of beneficial microorganisms with biocontrol capabilities, such as the arbuscular mycorrhizal fungi (AMF), has been pointed out as a viable alternative. With this study, we intended to investigate the effect of AMF colonization on the expression of P. viticola effectors during infection of grapevine. Grapevine plants were inoculated with the AMF Rhizophagus irregularis and, after mycorrhizae development, plants were infected with P. viticola. The expression of P. viticola RxLR effectors was analyzed by real-time PCR (qPCR) during the first hours of interaction. Results show that pre-mycorrhizal inoculation of grapevine alters the expression of several P. viticola effectors; namely, PvRxLR28, which presented decreased expression in mycorrhizal plants at the two time points post-infection tested. These results suggest that the pre-inoculation of grapevine with AMF could interfere with the pathogen’s ability to infect grapevine by modulation of pathogenicity effectors expression, supporting the hypothesis that AMF can be used to increase plant resistance to pathogens and promote more sustainable agriculture practices, particularly in viticulture.


2015 ◽  
Vol 154 (5) ◽  
pp. 828-849 ◽  
Author(s):  
J. A. P. PEREIRA ◽  
I. J. C. VIEIRA ◽  
M. S. M. FREITAS ◽  
C. L. PRINS ◽  
M. A. MARTINS ◽  
...  

SUMMARYThe benefits of mycorrhizal inoculation on growth, yield and nutrition of plants are well documented. However, mycorrhiza use in pepper and sweet pepper crops (Capsicumspp.) is still rarely exploited compared to other crops of economic importance. The current paper reviews the main aspects of the association between arbuscular mycorrhizal (AM) fungi and plants of pepper and sweet pepper. It includes topics about the effects of AM fungi on nutrition, growth and yield inCapsicumspp., paying particular attention to AM fungi–pathogen interactions, responses to some environmental stresses, as well as biochemical and physiological aspects of AM fungi–plant interaction inCapsicum annuumL.


1978 ◽  
Vol 56 (21) ◽  
pp. 2773-2780 ◽  
Author(s):  
R. N. Ames ◽  
R. G. Linderman

Easter lily bulbs were inoculated in the greenhouse with pot-culture inoculum containing a mixture of four vesicular–arbuscular (VA) mycorrhizal fungi as well as other fungi and bacteria, including pathogens. These organisms had multiplied in association with roots of lily, onion, and clover in pot cultures inoculated with sievings from lily field soils. Growth, as measured by bulb weight gain, root volume, and total leaf area, was determined on lily bulb plants inoculated at two inoculum levels and grown under three fertilizer regimes. Growth of plants inoculated with pot-culture inoculum was less than that of controls, especially in plants given the high inoculum (which included pot-culture plant roots) and the high rate of fertilization. The growth reduction apparently was due to the combined effect of greater incidence of Fusarium oxysporum root rot infections, damage to roots from fertilizer, and lower incidence of VA mycorrhizal infections. More mycorrhizal infections occurred in the low-fertilizer treatment than in the high- or no-fertilizer treatments at both high and low inoculum levels, but more F. oxysporum root rot occurred in the high-inoculum, high-fertilizer treatment.In a second experiment, lily seedlings that lacked bulb nutrient reserves were grown at a low fertilizer level and inoculated with Acaulospora trappei without any pathogens. Mycorrhizal plants were significantly larger than nonmycorrhizal control plants, and their tissues contained more N, P, K, Ca, and Mg than control plant tissues.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11768
Author(s):  
Xuejiang Zhang ◽  
Dazhao Yu ◽  
Hua Wang

Pepper root rot is a serious soil-borne disease that hinders pepper production, and efforts are being made to identify biological agents that can prevent and control pepper root rot. Our group recently discovered and produced a biological agent, named G15, which reduces the diversity and richness of fungi and bacteria when applied to pepper fields. In the soil of the G15-treatment condition, the pathogenic fungus Fusarium was inhibited, while the richness of beneficial bacteria Rhodanobacter was increased. Also, the ammonia nitrogen level was decreased in the G15-treatment soil, and the pH, total carbon, and total potassium levels were increased. Compared to the control condition, pepper yield was increased in the treatment group (by 16,680 kg acre−1). We found that G15 could alter the microbial community structure of the pepper rhizosphere. These changes alter the physical and chemical properties of the soil and, ultimately, improve resistance to pepper root rot and increase pepper yield.


2021 ◽  
Author(s):  
Amaia Nogales ◽  
Erika S. Santos ◽  
Gonçalo Victorino ◽  
Wanda Viegas ◽  
Maria Manuela Abreu

<p>Copper-based fungicides are commonly applied in vineyards to control fungal diseases that can severely affect grapevine productivity. Continuous application of this type of fungicides contributes to Cu accumulation in surface horizons of the soil, which can generate toxicity problems in plants, regardless of being an essential nutrient. Several strategies have been proposed to immobilize or counteract the effect of soil contaminants, such as plant inoculation with arbuscular mycorrhizal fungi (AMF). However, depending on the element concentration, this may not be sufficient to avoid its excessive accumulation in belowground and/or aboveground organs. Since Fe is known to have an antagonistic interaction with Cu in plants, Fe application, as an amendment, in vineyard soils, could be a good strategy to avoid excessive Cu uptake by grapevines growing in Cu-contaminated soils. However, little information is available on the combined effects of both strategies.</p><p>In order to reveal the possible beneficial effects of plant mycorrhization and Fe application in Cu-contaminated soils on grapevine growth and nutrition, a mesocosm experiment was established under controlled conditions. Two-year-old plants, previously inoculated or not with two different AMF, were grown in pots filled with 6.5 kg of an Arenosol collected from a wine-growing region. These plants were subjected to three soil treatments: 1) soil contamination with Cu, where the grapevines were watered with a solution containing 5.89 mg/L CuSO<sub>4</sub> to ensure that the soil in each container reached 300 mg Cu/kg; 2) soil contamination with Cu + Fe addition, where the plants were watered with a solution that contained the same amount of CuSO<sub>4</sub> plus 0.38 mg/L of FeNaEDTA·3H<sub>2</sub>O to achieve 100 mg of Fe/kg soil; and 3) non-contaminated soil watered with deionized water. Four months later, at the end of the growing season, plant vegetative growth as well as leaf and root nutrient contents were analyzed.</p><p>Grapevines inoculated with AMF demonstrated a good level of tolerance to high Cu concentrations in soil, as they presented significantly higher root biomass than non-inoculated plants and Cu was mainly accumulated in the roots avoiding its translocation to the aerial part. However, when the Cu-contaminated soil was amended with Fe, a significant decrease was observed in root biomass in all mycorrhizal inoculation treatments and Cu was accumulated in grapevine leaves. Contrastingly, Fe application helped to avoid the excessive increase of Mn concentrations in leaf and roots that is commonly induced in Cu contaminated soils, which can be detrimental for grapevine growth.</p><p>These results demonstrated that mycorrhizal inoculation is a suitable strategy to promote grapevine growth in Cu-contaminated soils. However, special attention needs to be taken when applying amendments to correct Cu contamination, as the mycorrhizal status of plants may alter the expected outcome.</p><p> </p><div> <div> </div> </div>


2010 ◽  
Vol 82 (3) ◽  
pp. 771-777 ◽  
Author(s):  
Edson L. Souchie ◽  
Rosario Azcón ◽  
Jose M. Barea ◽  
Eliane M.R. Silva ◽  
Orivaldo J. Saggin-Júnior

This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L-1 of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1693
Author(s):  
Agnieszka Jamiołkowska ◽  
Barbara Skwaryło-Bednarz ◽  
Elżbieta Patkowska ◽  
Halina Buczkowska ◽  
Anna Gałązka ◽  
...  

The aim of the study was to evaluate the influence of mycorrhizal fungi (MF) and irrigation on biological properties of sweet pepper rhizosphere in organic field cultivation. For this purpose, MF were applied to plants in the form of commercial mycorrhizal inoculum (Rhizophagus aggregatus, R. intraradices, Claroideoglomus etunicatum, Endogone mosseae, Funneliformis caledonium, and Gigaspora margarita) and irrigation according to the combinations: mycorrhized plants (PM), mycorrhized and irrigated plants (PMI), and irrigated plants (PI). Plants without MF and irrigation served as the absolute control (P). The study used classic and molecular techniques, assessing catalase activity, biodiversity of soil microorganisms (soil DNA analysis), and the Community-Level Physiological Profiles (CLPP) analysis using Biolog EcoPlates. The highest catalase activity was recorded in the control and mycorrhized soil sample. The highest total number of bacteria was noted in the rhizosphere of control plants (P) and irrigated plants, while the lowest number in the rhizosphere of mycorrhized and irrigated plants. Plant irrigation contributed to the increase in the total number of fungi in the rhizosphere. The rhizospheric soil of PM and PMI were characterized by the highest utilization of amines, amides, and amino acids, whereas the lowest level of utilization was detected in the P and PI rhizospheres. The highest biodiversity and metabolic activity were observed in the rhizospheres from the PMI and PM samples, whereas lower catabolic activity were recorded in the P and PI rhizospheres. The mycorrhization of crops improved the biological properties of the rhizosphere, especially under conditions of drought stress.


Sign in / Sign up

Export Citation Format

Share Document