scholarly journals Growth promotion of raspberry and strawberry plants by bacterial inoculants

2021 ◽  
Vol 20 (6) ◽  
pp. 71-82
Author(s):  
Paweł Trzciński ◽  
Mateusz Frąc ◽  
Anna Lisek ◽  
Michał Przybył ◽  
Magdalena Frąc ◽  
...  

Study on potential mechanisms influencing the growth of raspberry and strawberry plants showed that the most active was Bacillus sp. strain AF75BC producing IAA and siderophores, and having the ability to release phosphorus. The latter feature was also present in the strains Sp115AD (B. subtilis) and SP116AC (Paenibacillus polymyxa). Two of the tested strains: SP116AC and JaFGU (Lysobacter sp.) showed the ability to fix atmospheric nitrogen, while the AF75AB2 (Bacillus sp.) produced siderophores and IAA. All strains showed an antagonism toward the most important pathogens of strawberry and raspberry, i.e. Verticillium dahliae, Botrytis cinerea, Phytophthora cactorum and Colletotrichum acutatum, limiting their growth to a different extent on the PDA medium. Inoculation of raspberry roots with the tested bacteria resulted in an increase of some growth parameters of their above-ground part in cv. Poemat. In the case of cv. Polana, a significant increase was found only in the chlorophyll content in the leaves. All the inoculants caused an increase in dry mass of roots in cv. Polana, and in cv. Poemat similar effect was observed after applying Inoculants 1 and 3. The treatments of strawberry roots with any of the inoculants resulted in a significant increase in the total leaf surface area in cv. Rumba, but they had no effect on the chlorophyll content in the leaves of either cultivar. All the inoculants significantly increased the total length of roots and their total surface area in cv. Rumba. This parameter also increased in cv. Elsanta, and the number of root tips also significantly increased in this cultivar. Our study showed that the tested inocula is a promising alternative as a bio-fertilizer for small fruit production in sustainable and organic agricultural systems.

2021 ◽  
Vol 12 (2) ◽  
pp. 480-490
Author(s):  
Ahsanul Salehin ◽  
Ramesh Raj Puri ◽  
Md Hafizur Rahman Hafiz ◽  
Kazuhito Itoh

Colonization of a biofertilizer Bacillus sp. OYK strain, which was isolated from a soil, was compared with three rhizospheric and endophytic Bacillus sp. strains to evaluate the colonization potential of the Bacillus sp. strains with a different origin. Surface-sterilized seeds of tomato (Solanum lycopersicum L. cv. Chika) were sown in the sterilized vermiculite, and four Bacillus sp. strains were each inoculated onto the seed zone. After cultivation in a phytotron, plant growth parameters and populations of the inoculants in the root, shoot, and rhizosphere were determined. In addition, effects of co-inoculation and time interval inoculation of Bacillus sp. F-33 with the other endophytes were examined. All Bacillus sp. strains promoted plant growth except for Bacillus sp. RF-37, and populations of the rhizospheric and endophytic Bacillus sp. strains were 1.4–2.8 orders higher in the tomato plant than that of Bacillus sp. OYK. The plant growth promotion by Bacillus sp. F-33 was reduced by co-inoculation with the other endophytic strains: Klebsiella sp. Sal 1, Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6., though the population of Bacillus sp. F-33 maintained or slightly decreased. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp. F-33, the plant growth-promoting effects by Bacillus sp. F-33 were reduced without a reduction of its population, while when Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1, the effects were increased in spite of the reduction of its population. Klebsiella sp. Sal 1 colonized dominantly under both conditions. The higher population of rhizospheric and endophytic Bacillus sp. in the plant suggests the importance of the origin of the strains for their colonization. The plant growth promotion and colonization potentials were independently affected by the co-existing microorganisms.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2756
Author(s):  
Daissy Monroy-Velandia ◽  
Ericsson Coy-Barrera

Colombia is the main producer of cape gooseberry (Physalis peruviana L.), a plant known for its various consumption practices and medicinal properties. This plant is generally grown in eroded soils and is considered moderately tolerant to unfavorable conditions, such as nutrient-poor soils or high salt concentrations. Most studies conducted on this plant focus on fruit production and composition because it is the target product, but a small number of studies have been conducted to describe the effect of abiotic stress, e.g., salt stress, on growth and biochemical responses. In order to better understand the mechanism of inherent tolerance of this plant facing salt stress, the present study was conducted to determine the metabolic and growth differences of P. peruviana plants at three different BBCH-based growth substages, varying salt conditions. Hence, plants were independently treated with two NaCl solutions, and growth parameters and LC-ESI-MS-derived semi-quantitative levels of metabolites were then measured and compared between salt treatments per growth substage. A 90 mM NaCl treatment caused the greatest effect on plants, provoking low growth and particular metabolite variations. The treatment discrimination-driving feature classification suggested that glycosylated flavonols increased under 30 mM NaCl at 209 substages, withanolides decreased under 90 mM NaCl at 603 and 703 substages, and up-regulation of a free flavonol at all selected stages can be considered a salt stress response. Findings locate such response into a metabolic context and afford some insights into the plant response associated with antioxidant compound up-regulation.


2013 ◽  
Vol 66 (2) ◽  
pp. 369-374 ◽  
Author(s):  
Richa Anand ◽  
Susan Grayston ◽  
Christopher Chanway

2021 ◽  
Vol 12 (5) ◽  
pp. 286-294
Author(s):  
Poornata Jena ◽  
◽  
N. K. Sahoo ◽  
J. K. Mahalik ◽  
◽  
...  

A pot experiment was carried out in the net house of Department of Nematology, OUAT, Bhubaneswar, Odisha, India during June to August, 2017 on the application of oilcakes (mustard cake and neem cake) and bio-agents (Trichoderma viride, Glomus fasciculatum, Rhizobium leguminosarum) each alone and in combination for the management of root knot nematode (Meloidogyne incognita) in green gram. Result of the experiment indicated that soil application of mustard or neem cake @ 50 g m-2 with AM fungus (Glomus fasciculatum) @ 5 g m-² and seed treatment of Rhizobium @ 25 g kg-1 of green gram seed declined the root knot nematode population, number of galls plant-1, number of eggmass plant-1and root knot index with corresponding increase of plant growth parameters and chlorophyll content in green gram plant as compared to other treatments and untreated check. But integration of mustard cake @ 50 g m-2 at 2 weeks prior to sowing with AM fungus @ 5 g m-2 at 10 days before sowing and seed treatment of Rhizobium @ 25 g kg-1 green gram seed exhibited the lowest M. incognita population 200 cc soil-1 (153.33 J2), number of galls plant-1 (7.0), number of eggmass plant-1 (2.0) and root knot index (2.0) reflecting enhancement of plant growth parameters, number of pods (206.67%), number of nodules (691.17%) over untreated check. This integrated management module also recorded maximum increase in the availability of NPK content in soil and chlorophyll content as compared to other treatments.


2021 ◽  
Vol 39 (4) ◽  
pp. 309-316
Author(s):  
Reem Hamdan ◽  
◽  
Imad Ismail ◽  
Insaf Akel ◽  
◽  
...  

Hamdan, R.S., I.D. Ismail and I. Akel. 2021. Effect of Tomato Yellow Leaf Curl Virus Infection on Some Growth Indicators of Pepper Hybrids Grown Under Plastic House Conditions in Lattakia Governorate, Syria. Arab Journal of Plant Protection, 39(4): 309-316. https://doi.org/10.22268/AJPP-39.4.309316 This study aimed to evaluate the effect of Tomato yellow leaf curl virus (TYLCV) infection on some growth parameters of several pepper hybrids grown under protected cultivation along the Syrian coast. Four pepper hybrids (Capsicum annum) were tested, two hot (Lahab, Sirad) and two sweet (Nevada, Dallas) peppers. The research was carried out during the 2020-2021 growing season in a plastic house at the Agriculture Scientific Research Center in Lattakia, using a randomized complete block design, with 8 treatments, three replicates and 5 plants per replicate. The results obtained showed that the sweet pepper hybrids (Nevada, Dallas) were more sensitive to infection with Tomato yellow leaf curl virus than the hot pepper hybrids (Lahab, Sirad), without significant differences among them. The pepper hybrid Nevada did not show any apparent symptoms, and the effect of the virus on some growth parameters (number flowers, flower setting, and the leaf surface area) was evident in comparison with other hybrids, but the differences were not significant. The Dallas, Sirad and Lahab pepper hybrids showed visible symptoms in response to infection with infection rate of 93.33%, 80% and 80%, respectively. The effect of virus infection on the growth parameters of these hybrids was variable. The reduction in the flowers number of Nevada, Dallas, Cirad and Lahab after 45 days of infection was 33%, 31.10%, 10.23% and 5.07%, respectively, and also with a reduction in the number of flowers setting of 77.39%, 20.87%, 23.33% and 66.68%, respectively. The same was true for the leaf surface area, where reduction rate for the Nevada, Dallas, Sirad and Lahab hybrids 30 days after infection was 48.17%, 53.06%, 16.45% and 36.6%, respectively. Keywords: Tomato yellow leaf curl virus, pepper hybrids, growth parameter, host resistance, protected agriculture.


2020 ◽  
Vol 40 (12) ◽  
pp. 1726-1743
Author(s):  
Agnieszka Szuba ◽  
Łukasz Marczak ◽  
Izabela Ratajczak

Abstract It is believed that resource exchange, which is responsible for intensified growth of ectomycorrhizal plants, occurs in the fungus–plant interface. However, increasing evidence indicates that such intensified plant growth, especially root growth promotion, may be independent of root colonization. Nevertheless, the molecular adjustments in low-colonized plants remain poorly understood. Here, we analysed the metabolome of Populus × canescens microcuttings characterized by significantly increased growth triggered by inoculation with Paxillus involutus, which successfully colonized only 2.1 ± 0.3% of root tips. High-throughput metabolomic analyses of leaves, stems and roots of Populus × canescens microcuttings supplemented with leaf proteome data were performed to determine ectomycorrhiza-triggered changes in N-, P- and C-compounds. The molecular adjustments were relatively low in low-colonized (M) plants. Nevertheless, the levels of foliar phenolic compounds were significantly increased in M plants. Increases of total soluble carbohydrates, starch as well as P concentrations were also observed in M leaves along with the increased abundance of the majority of glycerophosphocholines detected in M roots. However, compared with the leaves of the non-inoculated controls, M leaves presented lower concentrations of both N and most photosynthesis-related proteins and all individual mono- and disaccharides. In M stems, only a few compounds with different abundances were detected, including a decrease in carbohydrates, which was also detected in M roots. Thus, these results suggest that the growth improvement of low-colonized poplar trees is independent of an increased photosynthesis rate, massively increased resource (C:N) exchange and delivery of most nutrients to leaves. The mechanism responsible for poplar growth promotion remains unknown but may be related to increased P uptake, subtle leaf pigment changes, the abundance of certain photosynthetic proteins, slight increases in stem and root amino acid levels and the increase in flavonoids (increasing the antioxidant capacity in poplar), all of which improve the fitness of low-colonized poplars.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan Muhammad Hilmi Wan Ibrahim ◽  
Mohd Hazim Mohamad Amini ◽  
Nurul Syuhada Sulaiman ◽  
Wan Rasidah Wan Abdul Kadir

AbstractHeavy metal contamination in water is happening worldwide. Adsorption using activated carbon is a common choice for cleaning the wastewater. The drawback of activated carbon is the higher cost of production due to the need for high heat in the process. This work investigated on activated carbon produced from the abundantly available Leucaena leucocephala biomass in order to reduce the cost of raw material. The biomass was chemically activated at different activation temperatures. The produced activated carbon was characterized using SEM, FT-IR, surface analyzer, and TGA. Isothermic and thermodynamic studies were done to evaluate the adsorption properties of the activated carbon. It was found out that higher surface area can be obtained using the higher activation temperature. Higher NaOH to carbonized sample ratios also resulted in higher surface area for all activation temperatures, which are 662 m2g-1 for 700 °C activation temperature, 735 m2g-1 for 750 °C, and 776 m2g−1 for 800 °C. Isothermic studies showed that all of the activated carbon that is produced from Leucaena leucocephala biomass are fit to the Langmuir isotherm, regardless of any activation temperature. Lastly, the thermodynamic study found out the adsorption process is endothermic, reflected by the positive value of ΔHo. It can be concluded that Leucaena leucocephala is a promising alternative material for producing activated carbon.


2020 ◽  
Vol 113 (11) ◽  
pp. 1539-1558
Author(s):  
Liangliang Zhou ◽  
Ting Zhang ◽  
Shan Tang ◽  
Xueqin Fu ◽  
Shuijing Yu

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1571
Author(s):  
Sonia Szymańska ◽  
Jarosław Tyburski ◽  
Agnieszka Piernik ◽  
Marcin Sikora ◽  
Justyna Mazur ◽  
...  

Increasing land salinization in recent decades has led to a decrease in crop productivity worldwide. We hypothesized that bioaugmentation of beetroot (Beta vulgaris) with halotolerant endophytic bacterial strains isolated from the obligatory halophytic plant Salicornia europaea L. may mitigate salt stress in new host plants. Therefore, we investigated the effects of inoculation with Pseudomonas stutzeri ISE12 or Kushneria marisflavi CSE9 on B. vulgaris growth in substrates enriched with various NaCl concentrations (0, 50, 150, 300 mM). The results of this study indicated that bioaugmentation with either bacteria resulted in improved growth parameters and increased chlorophyll content, as well as decreased proline and hydrogen peroxide concentrations, in B. vulgaris organs. However, K. marisflavi CSE9 was more efficient in achieving salt stress mitigation than P. stutzeri ISE12. In conclusion, the range of salinity tolerance seems to be a key parameter in the selection of strains for beet inoculation. The selected halotolerant endophytes (P. stutzeri ISE12 and K. marisflavi CSE9) isolated from the roots of obligatory halophytic S. europaea may be employed for plant growth promotion, especially in saline areas, and have potential applications in sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document