scholarly journals Random- Mutagenesis in Photosynthetic Microorganisms Further Selected with Respect to Increased Lipid Content

Author(s):  
Ana Valentina Ardelean ◽  
Ioan I. Ardelean ◽  
Oana Alina Sicuia-Boiu ◽  
Petruţa Cornea

Abstract In the last decade there is an increased interest in selecting photosynthetic microorganisms with higher lipid content useful for biotechnological applications. In this paper we present our original results concerning: i) the selection of naturally occurring photosynthetic microorganisms with higher lipid content; ii) the use of these isolates as biological material subject of randomly induced mutagenesis; iii) selection by iodine vapour method of clones with decreased polysaccharides content and expected higher lipid content) as well as iv) genetic analysis of most promising strains in order to check the if they are true mutants or not. The results thus obtained argue the importance of the selection of naturally occurring photosynthetic microorganisms with higher lipid content as well as the use of random mutagenesis as a valuable tool to improve the genetic diversity of photosynthetic microorganisms in order to increase their ability to synthesize lipids for further biodiesel production and/or omega 3 or 6 production.

2014 ◽  
Vol 472 ◽  
pp. 759-763
Author(s):  
Chao Ma ◽  
Bing Feng Liu ◽  
Hong Yu Ren ◽  
Nan Qi Ren

Among different biodiesel production technologies, microalgae biodiesel production has exhibited largest potential as an substitute of fossil fuels. Microalgae are effective photosynthetic microorganisms and ideal materials for biodiesel production because they have many advantages, such as the high lipid content, fast growth rate and good adaptability. Most key factor for the industrialization of microalgae biodiesel production is selecting the microalgae with rich lipid, which determines the production cost of microalgae biodiesel. The different breeding technologies of microalgae can significantly shorten the breeding time, reduce the production cost and obtain expected strains. The prospect of microalgael application in biodiesel production was also discussed.


Kerntechnik ◽  
2008 ◽  
Vol 73 (3) ◽  
pp. 118-121
Author(s):  
T. Heinrich ◽  
L. Funke ◽  
M. Köhler ◽  
U.-K. Schkade ◽  
F. Ullrich ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Grimar Abdiel Perez ◽  
Pumipat Tongyoo ◽  
Julapark Chunwongse ◽  
Hans de Jong ◽  
Anucha Wongpraneekul ◽  
...  

AbstractThis study explored a germplasm collection consisting of 112 Luffa acutangula (ridge gourd) accessions, mainly from Thailand. A total of 2834 SNPs were used to establish population structure and underlying genetic diversity while exploring the fruit characteristics together with genetic information which would help in the selection of parental lines for a breeding program. The study found that the average polymorphism information content value of 0.288 which indicates a moderate genetic diversity for this L. acutangula germplasm. STRUCTURE analysis (ΔK at K = 6) allowed us to group the accessions into six subpopulations that corresponded well with the unrooted phylogenetic tree and principal coordinate analyses. When plotted, the STRUCTURE bars to the area of collection, we observed an admixed genotype from surrounding accessions and a geneflow confirmed by the value of FST = 0.137. AMOVA based on STRUCTURE clustering showed a low 12.83% variation between subpopulations that correspond well with the negative inbreeding coefficient value (FIS =  − 0.092) and low total fixation index (FIT = 0.057). There were distinguishing fruit shapes and length characteristics in specific accessions for each subpopulation. The genetic diversity and different fruit shapes in the L. acutangula germplasm could benefit the ridge gourd breeding programs to meet the demands and needs of consumers, farmers, and vegetable exporters such as increasing the yield of fruit by the fruit width but not by the fruit length to solve the problem of fruit breakage during exportation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aliaksei Vasilevich ◽  
Aurélie Carlier ◽  
David A. Winkler ◽  
Shantanu Singh ◽  
Jan de Boer

AbstractNatural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1424
Author(s):  
Magdalena Cieplak ◽  
Sylwia Okoń ◽  
Krystyna Werwińska

The assessment of the genetic diversity of cultivated varieties is a very important element of breeding programs. This allows the determination of the level of genetic differentiation of cultivated varieties, their genetic distinctiveness, and is also of great importance in the selection of parental components for crossbreeding. The aim of the present study was to determine the level of genetic diversity of oat varieties currently grown in Central Europe based on two marker systems: ISSR and SCoT. The research conducted showed that both these types of markers were suitable for conducting analyses relating to the assessment of genetic diversity. The calculated coefficients showed that the analyzed cultivars were characterized by a high genetic similarity. However, the UPGMA and PCoA analyses clearly indicated the distinctiveness of the breeding programs conducted in Central European countries. The high genetic similarity of the analyzed forms allow us to conclude that it is necessary to expand the genetic pool of oat varieties. Numerous studies show that landraces may be the donor of genetic variation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Li-Yun Lin ◽  
Hui-Ying Huang ◽  
Xue-Yan Liang ◽  
Dong-De Xie ◽  
Jiang-Tao Chen ◽  
...  

Abstract Background Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. Methods 153 blood spot samples from Bioko malaria patients were collected during 2016–2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. Results A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN–dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. Conclusions Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


Author(s):  
Andrea Highfield ◽  
Angela Ward ◽  
Richard Pipe ◽  
Declan C. Schroeder

Abstract Twelve hyper-β carotene-producing strains of algae assigned to the genus Dunaliella salina have been isolated from various hypersaline environments in Israel, South Africa, Namibia and Spain. Intron-sizing of the SSU rDNA and phylogenetic analysis of these isolates were undertaken using four commonly employed markers for genotyping, LSU rDNA, ITS, rbcL and tufA and their application to the study of Dunaliella evaluated. Novel isolates have been identified and phylogenetic analyses have shown the need for clarification on the taxonomy of Dunaliella salina. We propose the division of D. salina into four sub-clades as defined by a robust phylogeny based on the concatenation of four genes. This study further demonstrates the considerable genetic diversity within D. salina and the potential of genetic analyses for aiding in the selection of prospective economically important strains.


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


Sign in / Sign up

Export Citation Format

Share Document