scholarly journals Altered Gabab Receptor Thermoregulatory Function in Rats with Diet-Induced Obesity

2019 ◽  
Vol 46 (2) ◽  
pp. 21-24
Author(s):  
M. Hristov ◽  
Kr. Yakimova

Abstract GABAB receptors are G-protein-coupled receptors, playing a very important role in the regulation of many physiological processes. The GABAB signaling pathway could modulate neurotransmission processes at the level of the preoptic area in the anterior hypothalamus, which is thought to function as the thermoregulatory center. The present study was performed to investigate the effects of GABAB agonists and antagonists on core body temperature of rats with normal weight and diet-induced obesity. The results showed that systemic administration of the GABAB antagonist CGP35348 induced significant hyper-thermia in rats with normal weight, whereas the GABAB agonist baclofen led to a decrease in body temperature. The effects of baclofen and CGP35348 on body temperature were less pronounced in rats with diet-induced obesity compared with those with normal weight. Presently it remains unclear how obesity affects the GABAB receptor function at the level of the central thermoregulatory system.

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Gabrielle F Gloston ◽  
Annie E Ensor ◽  
Samarth Patel ◽  
Rebecca Williams ◽  
Courtney M Peterson ◽  
...  

The circadian clock is an endogenous biological timekeeper that responds to environmental changes and governs various physiological processes over a 24-hour cycle. Blood pressure (BP) variation is thought to be controlled by the circadian clock, but few studies have examined circadian control of BP in humans. Moreover, it is unknown whether nighttime BP dipping is driven by the circadian system or by external factors. We investigated whether the circadian system drives 24-hour rhythms in BP, including nighttime BP dipping, using a 30-hour constant routine (CR) protocol. The CR protocol controls for external factors, allowing circadian rhythms to be isolated and measured, by having participants lie in a semi-recumbent posture in dim light (<10 lux) at a constant temperature, consume isocaloric snacks every 2 hours, and maintain wakefulness. To measure the BP rhythm, ambulatory BP was measured every 30 minutes (SpaceLabs 90227), and to measure the central circadian rhythm, core body temperature was measured every 10 seconds using an ingestible, wireless sensor (HQInc Core Body Temperature Wireless Data Record and Sensor). To date, 17 normotensive African American participants (13 females and 4 males), with a mean age of 37 (± 11.3) years and body mass index (BMI) of 32.5 kg/m 2 , have completed the study. Approximately 59% of participants (10 of 17) had non-dipping systolic BP at screening, defined as a <10% decrease in mean systolic BP from daytime to nighttime. Under constant conditions, 94% of participants (16 of 17) had a non-dipping BP phenotype. Median systolic BP dipping was 0.8% for females and 2.2% for males. There was a robust rhythm in participants’ core body temperature but not BP, suggesting that the circadian clock may not contribute substantially to a nighttime decrease in BP in normotensive African Americans. Instead, the non-dipping BP phenotype is likely more so a result of behavioral and/or physiological sleep-related processes. Future research and interventions for non-dipping BP may need to target these underlying behavioral and physiological processes.


2012 ◽  
Vol 26 (2) ◽  
Author(s):  
Joanna Pawlak ◽  
Paweł Zalewski ◽  
Jacek J. Klawe ◽  
Monika Zawadka ◽  
Anna Bitner ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Keisuke Suzuki ◽  
Hirokazu Ohtaki ◽  
Motoyasu Nakamura ◽  
Hiroki Yamaga ◽  
...  

Abstract Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.


Sign in / Sign up

Export Citation Format

Share Document