scholarly journals Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) – A Review of Ten-Year Studies

2019 ◽  
Vol 19 (1) ◽  
pp. 3-29 ◽  
Author(s):  
Saied Jafari ◽  
Mahdi Ebrahimi ◽  
Yong M. Goh ◽  
Mohamed A. Rajion ◽  
Mohamed F. Jahromi ◽  
...  

AbstractA wide range of plant secondary metabolites (PSM) have been shown to have the potential to modulate the fermentation process in the rumen. The use of plants and plant extracts as natural feed additives has become an interesting topic not only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential oils) have recently been investigated for their methane (CH4) reduction potential, there have not yet been major breakthroughs that could be applied in practice. However, the effectiveness of these PSM depends on the source, type and the level of their presence in plant products. The aim of the present review was to assess ruminal CH4 emission through a comparison of integrating related studies from published papers, which described various levels of different PSM sources being added to ruminant feed. Apart from CH4, other related rumen fermentation parameters were also included in this review.

2019 ◽  
Vol 24 (2) ◽  
pp. 68
Author(s):  
Sumudu Chathurika ◽  
Sathya Sujani ◽  
Ariyathilaka Manawadu ◽  
Thakshala Seresinhe

<p class="abstrak2">Recently the utilization of biological feed additives over chemical feed additives in animal feeds have increased. The objective of the present study was to evaluate the effect of supplementing wild guinea grass (panicum maximum) with two plant species, artocarpus heterophyllus (jack leaves; ah) and tridax procumbens (Tp) containing plant secondary metabolites tannin and saponin, respectively and the enzyme product dyadic cellulase (Ce) and yeast (Ye). For each suplement two levels of treatments were tested. In plant-based suplements 20 (Aht1, Tpt1) and 30% (Aht2 and Tpt2) substituted the base substrate. The enzyme was applied as 10 µl (Cet1) and 20 µl (Cet2) and yeast as 4 mg (Yet1) and 6 mg (Yet2). the experimental design was a randomized complete block design (rcbd) and the period of in vitro rumen fermentation incubation was 72 hrs. All treatments significantly (P &lt; 0.05) enhanced the in vitro gas production (Ivgp) compared with the control. Treatments of ah and ce significantly (P &lt; 0.05) improved the in vitro rumen dry matter degradability (ivrdmd). All treatments significantly (P&lt;0.05) suppressed the ruminal protozoa population as compared to the control. Ammonia nitrogen (Nh3-N) production was not significantly (P&gt;0.05) influenced with supplements. in conclusion, treatments enhanced the rumen fermentation in means of enhanced ivgp, ivrdmd and reduced protozoa numbers.</p>


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P &lt; 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 157-158
Author(s):  
Nelson Vera ◽  
Sandra Suescun-Ospina ◽  
Rita Astudillo ◽  
Antonia Muñoz ◽  
Rodrigo Allende ◽  
...  

Abstract Replacing synthetic feed additives by plant secondary metabolites (PSM) as essential oils, saponins and tannins has been proposed, due to their potential to reduce methane (CH4) emissions, without adverse effects on ruminal fermentation. This study aimed to evaluate the use of oregano essential oil (OR), quillaja saponin (QS), and quebracho tannin (QT) extracts and their combinations as feed additives on in vitro CH4 production and rumen fermentation parameters. The design was an incomplete factorial arrangement in a randomized complete block with seven treatments using batch culture. Dietary treatments were: control (CON), without plant extracts; OR (0.07% dry matter [DM] basis of the diet); QS (0.05% DM); QT (1.00% DM); and binary combinations QT+QS (1.00 and 0.05% DM, respectively); OR+QS (0.07 and 0.05% DM, respectively); and OR+QT (0.07 and 1.00% DM, respectively). The forage to concentrate ratio was 51:49. Forage was composed of corn silage (42.0%) and perennial ryegrass and white clover hay (9.0%); concentrate was based on high–moisture corn (33.0%), soybean meal (15.0%), vitamin and mineral salt (1%). All combinations decreased the net CH4 and its production (P ≤ 0.038 and P ≤ 0.027, respectively). However, the interaction between QT and QS decreased CH4 yield (P = 0.046), whereas OR and QS interaction, trended to decreased CH4 yield (P = 0.068) and the in vitro DM disappearance (IVDMD; P = 0.055). In contrast, the interaction between OR and QT decreased the IVDMD (P = 0.036). The gas output, partitioning factor and pH, were unaffected (P ≥ 0.066) by PSM, separately or in combinations. The results suggest that QT+QS is the best PSM combination to reduce the amount of CH4 per g DM degraded without adversely impacting rumen fermentation and diet digestibility. Although OR+QT or OR+QS are also an alternative to reduce CH4, its combination may also reduce diet digestibility.


2015 ◽  
Vol 6 (3) ◽  
pp. 353-360 ◽  
Author(s):  
S.S. Dagar ◽  
N. Singh ◽  
N. Goel ◽  
S. Kumar ◽  
A.K. Puniya

In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.


2006 ◽  
Vol 34 ◽  
pp. 235-249 ◽  
Author(s):  
Harinder P.S. Makkar

SummaryDuring grazing, animals interact with many compounds in the diet. Plant secondary metabolites (PSM) such as tannins, saponins, cyanogenic glycosides, mimosine. could have wide ranging effects –beneficial or harmful, depending on the nature, quantity in the plant, and amount and rate of ingestion of the PSM. A wide range of methods is available to quantify these PSM. The methods presented for tannins are based on the oxidation-reduction, metal complexing, polyethylene glycol binding and protein precipitation/binding principles of tannins. A tannin bioassay based onin vitrogas production using a medium containing rumen microbes, and incubation of the plant sample with and without polyethylene glycol (a tannin-inactivating agent) is also discussed. Saponins have haemolitic activity, and a qualitative and a quantitative assay are based on this property are described, in addition to a spectrophotometric assay. Cyanogenic glycosides are measured using picric acid methods with and without distillation. The methods described for mimosine determination are based on its reaction with ferric chloride and diazotised p-nitroaniline. Alkaloids are a chemically heterogeneous group of compounds. Therefore, it is difficult to assay alkaloids using a single method. An approach, for qualitative assessment of alkaloids in feeds and forages, based on the use of various spray reagents on the developed TLC plate or a paper chromatographic paper is presented.


2015 ◽  
Vol 25 ◽  
pp. 31-37
Author(s):  
SCK Barma ◽  
MR Amin ◽  
M Monirruzzaman ◽  
MB Sarker ◽  
AKMA Kabir

An experiment was conducted to quantify the chemical composition, different forms of tannins and their effects on in vitro gas production, organic matter digestibility and metabolisable energy content in Syzigium cumini (Blackberry) seed with and without polyethelene glycol (PEG). The DM, OM, ash, CP, NDF and ADF contents of S. cumini seeds were 90.1, 87.6, 2.6, 4.6, 32.9 and 15.5%, respectively. The total phenol, total tannin, condensed tannin and hydrolysable tannin content were 5.89, 4.25, 0.42 and 0.05mg/g seed, respectively. In vitro gas production, organic matter digestibility and metabolisable energy content of S. cumini seed were 54 ml, 42.91% and 6.43 MJ/Kg DM, respectively. Addition of PEG to tannin containing seed was significantly (P<0.05) increased in vitro gas production, OMD and ME content. Higher levels of tannins in S. cumini seed could limit utilization through impaired digestibility and nutrient utilization but the addition of PEG increased all the fermentation parameters studied. It is predictable from the present findings that S. cumini seed could be utilized as natural source of feed additives to alter rumen fermentation parameters especially to protect protein and other nutrients from ruminal degradation, thereby make the nutrients available in the lower tract for higher milk and meat yield.Progress. Agric. 2014. 25: 31-37


2011 ◽  
Vol 91 (3) ◽  
pp. 433-448 ◽  
Author(s):  
J. M. Castro-Montoya ◽  
H. P. S. Makkar ◽  
K. Becker

Castro-Montoya, J. M., Makkar, H. P. S. and Becker, K. 2011. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 91: 433–448. Post-rumen chemical composition of the microbial fraction is one of the factors that determines the nutrients absorbed and available for maintenance and production of the animal. The hypothesis was that tannins and saponins alter chemical composition of rumen microbes and fermentation parameters in the rumen. Purified quebracho, mimosa, chestnut and sumach tannins; and quillaja and gypsophilla saponins were incubated with 380 mg of substrate (hay:concentrate 70:30 wt/wt) for 24 h in an in vitro gas production system at concentrations from 0.25 to 1.25 mg mL−1. Saponins increased N and reduced sugar contents of the liquid-associated microbes. The ratio of crude protein to purine bases significantly increased on adding sumach and chestnut tannins and decreased on the addition of quebracho and mimosa tannins. Quebracho, mimosa and chestnut tannins reduced total short-chain fatty acid production. The acetate:propionate ratio decreased for all additives. Results suggest that in vitro (a) depending on the source and the concentration, tannins would have an effect on the nitrogen and sugar contents of the liquid associated microbes, (b) saponins are likely to increase N and reduce sugar contents of rumen liquid associated microbes, and (c) estimation of microbial protein synthesis based on purine bases may lead to under- or over-estimations in the presence of tannins and saponins. In vivo studies are required to validate these results.


2014 ◽  
Vol 54 (3) ◽  
pp. 299 ◽  
Author(s):  
M. Taghavi-Nezhad ◽  
D. Alipour ◽  
M. D. Flythe ◽  
P. Zamani ◽  
G. Khodakaramian

Gas (CO2 and CH4) and ammonia production in the rumen represent major sources of lost carbon and nitrogen, respectively. The essential oils of some plants have been shown to decrease gas and ammonia production by selectively inhibiting rumen microbes. Particularly, those of Zataria multiflora (ZEO; thymol 21%, carvacrol 32%) and Mentha spicata (SEO; carvone 55%) were evaluated in vitro as ruminant-feed additives. The experiments employed mixed rumen microbes and a hyper-ammonia-producing bacterium (HAP) isolated from the rumen of a Mehraban sheep. Both ZEO and SEO decreased in vitro fibre digestibility and also gas production by mixed rumen microbes that were fermenting a typical growing-lamb diet. ZEO decreased ammonia concentration in mixed culture of rumen microbes, but SEO exerted the opposite effect. A bacterial isolate (MT8) was obtained from the rumen of a Mehraban sheep, and the 16S rRNA gene sequence indicated that it was most closely related to Clostridium bifermentans. Isolate MT8 exhibited rapid ammonia production when peptides were the growth substrate, which indicated that MT8 was a HAP. Both oils inhibited the growth and ammonia production of isolate MT8. However, ZEO decreased ammonia production at lower doses, and to a greater degree, than did SEO. These results indicated that both essential oils could potentially be used to modulate rumen fermentation. The detrimental effects on fibre digestion could be problematic in high-forage diets, and this requires further investigation. Isolate MT8 is the first described HAP from the Mehraban sheep rumen. Results on ammonia production by isolate MT8 and mixed rumen microbes indicate differential mode of action of each oil on this parameter.


2012 ◽  
Vol 176 (1-4) ◽  
pp. 78-93 ◽  
Author(s):  
R. Bodas ◽  
N. Prieto ◽  
R. García-González ◽  
S. Andrés ◽  
F.J. Giráldez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document