scholarly journals The Physiological Aspects, Technique and Monitoring of Slaughter Procedures and their Effects on Meat Quality – A Review

2019 ◽  
Vol 19 (4) ◽  
pp. 857-873
Author(s):  
Karol Borzuta ◽  
Dariusz Lisiak ◽  
Piotr Janiszewski ◽  
Eugenia Grześkowiak

AbstractThe aim of the paper was a review of the scientific achievements in physiological stunning and slaughtering mechanisms, control methods of consciousness and their effect on meat quality. Special attention was paid to neurophysiological phenomena that accompany the process of depriving consciousness before animal deaths using mechanical, electrical and gas stunning methods. These mechanisms are associated with cerebral hypoxia or ischemia or depolarization, acidification and the destruction of cerebral neurons. Such effects can be caused by shock waves, bleeding, electric fields, reduction or arrest of the circulation of blood in the brain, high CO2 level or low O2 level in inhaled air or by the mechanical damage of neurons. Some of the stunning methods cause immediate and some gradual consciousness loss. An important factor in the animals’ slaughtering process is the estimation of their consciousness level before bleeding. The indicators of consciousness during mechanical, electrical and gas stunning are discussed within this paper. It is pointed out that at least 2 indicators should be used when estimating animals’ consciousness after stunning, e.g. phonic and clonic limb movements and lack of breathing. Ten indicators to control the consciousness were described. The effect of stunning on meat quality is also discussed. It was found that the impact of this process on the quality is not clear. However, the prevailing view is that electric stunning causes effusions and blood haemorrhages in meat. Whereas gas stunning with a CO2 mixture diminishes the risk of PSE meat. Despite numerous scientific research on the slaughter process there is still deficiency in knowledge on losing consciousness mechanisms and feeling pain. It might be useful to extend the knowledge concerning neurotransmitters and use of magnetic resonance in future studies.

2021 ◽  
Author(s):  
Gabriel Moreno Cunha ◽  
Gilberto Corso ◽  
José Garcia Vivas Miranda ◽  
Gustavo Zampier Dos Santos Lima

Abstract In recent decades, there has been growing interest in the impact of electric fields generated in the brain. Transmembrane ionic currents originate electric fields in the extracellular space and are capable of affecting nearby neurons, a phenomenon called ephaptic neuronal communication. In the present work, the Quadratic Integrate-and-Trigger model (QIF-E) underwent an adjustment/improvement to include the ephaptic coupling behavior between neurons and their results are compared to the empirical results. In this way, the analysis tools are employed according to the neuronal activity regime: (i) for the subthreshold regime, the circular statistic is used to describe the phase differences between the input stimulus signal and the modeled membrane response; (ii) in the suprathreshold regime, the Population Vector and the Spike Field Coherence are employed to estimate phase preferences and the coupling intensity between the input stimulus and the Action Potentials. The results observed are i) in the subthreshold regime the values of the phase differences change with distinct frequencies of an input stimulus; ii) in the supra-threshold regime the preferential phase of Action Potentials changes for different frequencies. In addition, we explore other parameters of the model, such as noise and membrane characteristic-time, in order to understand different types of neurons and extracellular environment related to ephaptic communication. Such results are consistent with results observed in empirical experiments based on ephaptic coupling behavior. In addition, the QIF-E model allows further studies on the physiological importance of ephaptic coupling in the brain, and its simplicity can open a door to simulating ephaptic coupling in neuron networks and evaluating the impact of ephaptic communication in such scenarios.


2022 ◽  
Vol 23 (2) ◽  
pp. 846
Author(s):  
Stanislas Martin ◽  
Audrey Foulon ◽  
Wissam El Hage ◽  
Diane Dufour-Rainfray ◽  
Frédéric Denis

The study aimed to examine the impact of the oropharyngeal microbiome in the pathophysiology of schizophrenia and to clarify whether there might be a bidirectional link between the oral microbiota and the brain in a context of dysbiosis-related neuroinflammation. We selected nine articles including three systemic reviews with several articles from the same research team. Different themes emerged, which we grouped into 5 distinct parts concerning the oropharyngeal phageome, the oropharyngeal microbiome, the salivary microbiome and periodontal disease potentially associated with schizophrenia, and the impact of drugs on the microbiome and schizophrenia. We pointed out the presence of phageoma in patients suffering from schizophrenia and that periodontal disease reinforces the role of inflammation in the pathophysiology of schizophrenia. Moreover, saliva could be an interesting substrate to characterize the different stages of schizophrenia. However, the few studies we have on the subject are limited in scope, and some of them are the work of a single team. At this stage of knowledge, it is difficult to conclude on the existence of a bidirectional link between the brain and the oral microbiome. Future studies on the subject will clarify these questions that for the moment remain unresolved.


Author(s):  
Ronja Thieleking ◽  
Rui Zhang ◽  
Maria Paerisch ◽  
Kerstin Wirkner ◽  
Alfred Anwander ◽  
...  

In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or masking pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from e.g. diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19-54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After differing preprocessing steps, 3D-fractional anisotropy (FA) maps obtained by tensor fitting were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Preprocessing including unringing reduced the Gibbs ringing artefact, and head motion estimates were significantly lower at Skyra. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.


2021 ◽  
Vol 1 ◽  
pp. 3081-3090
Author(s):  
Wiktoria Staszak ◽  
Danielly de Paula ◽  
Falk Uebernickel

AbstractMobile health, or mHealth, solutions offer great potential in the area of self-monitoring of chronic conditions, where most of the day-to-day management of the condition is done at home by the patient or their caregivers. Narcolepsy is a chronic sleep condition caused by an orexin deficiency in the brain resulting in its inability to regulate sleep cycles, causing poor quality sleep during the day and problems with wakefulness during the day. This paper set out to investigate whether Habitual, an app for tracking symptoms, daily habits and medication adherence for people with narcolepsy could increase their sense of empowerment. Ten participants were asked to test the app during a period of 30 days, after which they were asked to answer a survey to investigate whether their perception of their empowerment towards the management of narcolepsy had changed. Although using the app for only 30 days provides a very limited understanding of the impact of Habitual, this study shows positive indication for future mHealth solutions for the management of narcolepsy. Future studies should test the openness to using an app for the management of narcolepsy with a wider cohort.


2018 ◽  
Vol 15 (8) ◽  
pp. 743-750 ◽  
Author(s):  
Kresimir Ukalovic ◽  
Sijia Cao ◽  
Sieun Lee ◽  
Qiaoyue Tang ◽  
Mirza Faisal Beg ◽  
...  

Background: Recent work on Alzheimer's disease (AD) diagnosis focuses on neuroimaging modalities; however, these methods are expensive, invasive, and not available to all patients. Ocular imaging of biomarkers, such as drusen in the peripheral retina, could provide an alternative method to diagnose AD. Objective: This study compares macular and peripheral drusen load in control and AD eyes. Methods: Postmortem eye tissues were obtained from donors with a neuropathological diagnosis of AD. Retina from normal donors were processed and categorized into younger (<55 years) and older (>55 years) groups. After fixation and dissection, 3-6 mm punches of RPE/choroid were taken in macular and peripheral (temporal, superior, and inferior) retinal regions. Oil red O positive drusen were counted and grouped into two size categories: small (<63 μm) and intermediate (63-125 μm). Results: There was a significant increase in the total number of macular and peripheral hard drusen in older, compared to younger, normal eyes (p<0.05). Intermediate hard drusen were more commonly found in the temporal region of AD eyes compared to older normal eyes, even after controlling for age (p<0.05). Among the brain and eye tissues from AD donors, there was a significant relationship between cerebral amyloid angiopathy (CAA) severity and number of temporal intermediate hard drusen (r=0.78, p<0.05). Conclusion: Imaging temporal drusen in the eye may have benefit for diagnosing and monitoring progression of AD. Our results on CAA severity and temporal intermediate drusen in the AD eye are novel. Future studies are needed to further understand the interactions among CAA and drusen formation.


2021 ◽  
Vol 22 (13) ◽  
pp. 7051
Author(s):  
Vitalii Kim ◽  
Emily Gudvangen ◽  
Oleg Kondratiev ◽  
Luis Redondo ◽  
Shu Xiao ◽  
...  

Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 892
Author(s):  
Elisa L. J. Moya ◽  
Elodie Vandenhaute ◽  
Eleonora Rizzi ◽  
Marie-Christine Boucau ◽  
Johan Hachani ◽  
...  

Central nervous system (CNS) diseases are one of the top causes of death worldwide. As there is a difficulty of drug penetration into the brain due to the blood–brain barrier (BBB), many CNS drugs treatments fail in clinical trials. Hence, there is a need to develop effective CNS drugs following strategies for delivery to the brain by better selecting them as early as possible during the drug discovery process. The use of in vitro BBB models has proved useful to evaluate the impact of drugs/compounds toxicity, BBB permeation rates and molecular transport mechanisms within the brain cells in academic research and early-stage drug discovery. However, these studies that require biological material (animal brain or human cells) are time-consuming and involve costly amounts of materials and plastic wastes due to the format of the models. Hence, to adapt to the high yields needed in early-stage drug discoveries for compound screenings, a patented well-established human in vitro BBB model was miniaturized and automated into a 96-well format. This replicate met all the BBB model reliability criteria to get predictive results, allowing a significant reduction in biological materials, waste and a higher screening capacity for being extensively used during early-stage drug discovery studies.


Sign in / Sign up

Export Citation Format

Share Document